Abdel‐Azeem S. Abdel‐Baki, Shawky M. Aboelhadid, Heba Abdel‐Tawab, Sónia Rocha, Manal Ahmed, Saleh Al‐Quraishy, Lamjed Mansour
{"title":"Ultrastructural and molecular characterization of Glugea sp. (microsporidia), a parasite of the Red Sea fish Carangoides bajad (Carangidae)","authors":"Abdel‐Azeem S. Abdel‐Baki, Shawky M. Aboelhadid, Heba Abdel‐Tawab, Sónia Rocha, Manal Ahmed, Saleh Al‐Quraishy, Lamjed Mansour","doi":"10.1111/jeu.13058","DOIUrl":null,"url":null,"abstract":"<jats:italic>Glugea</jats:italic> sp. found infecting the liver of the teleost fish <jats:italic>Carangoides bajad</jats:italic> from the Red Sea, Egypt, is described based on light microscopy and ultrastructural characteristics combined with phylogenetic analyses. This microsporidium forms whitish xenomas up to ~4 mm in size. Xenomas display numerous parasitophorous vacuoles totally filled by mature spores, no other life cycle stages were observed. Mature spores ellipsoidal and measuring 6.3 × 4.0 μm in size. The polaroplast appears composed of two distinct regions: an electron‐dense vesicular region and a densely packed lamellar region. The polar tubule forms approximately 24–27 coils arranged in three layers encircling the posterior vacuole. The small subunit (SSU) rRNA gene and its ITS region were sequenced and showed the highest similarity of 99.4% to other <jats:italic>Glugea</jats:italic> spp. Bayesian inference and maximum likelihood analyses place the novel isolate within the <jats:italic>Glugea</jats:italic> clade, more specifically within a subclade that predominantly grouped species described from fish inhabiting the Arabian Gulf or Red Sea. The results validate the parasite's classification in the <jats:italic>Glugea</jats:italic> genus. Nevertheless, until more detailed ultrastructural and molecular data are obtained, the identification of the current <jats:italic>Glugea</jats:italic> species is hampered by the absence of some developmental stages and the high degree of genetic similarity.","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Eukaryotic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jeu.13058","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glugea sp. found infecting the liver of the teleost fish Carangoides bajad from the Red Sea, Egypt, is described based on light microscopy and ultrastructural characteristics combined with phylogenetic analyses. This microsporidium forms whitish xenomas up to ~4 mm in size. Xenomas display numerous parasitophorous vacuoles totally filled by mature spores, no other life cycle stages were observed. Mature spores ellipsoidal and measuring 6.3 × 4.0 μm in size. The polaroplast appears composed of two distinct regions: an electron‐dense vesicular region and a densely packed lamellar region. The polar tubule forms approximately 24–27 coils arranged in three layers encircling the posterior vacuole. The small subunit (SSU) rRNA gene and its ITS region were sequenced and showed the highest similarity of 99.4% to other Glugea spp. Bayesian inference and maximum likelihood analyses place the novel isolate within the Glugea clade, more specifically within a subclade that predominantly grouped species described from fish inhabiting the Arabian Gulf or Red Sea. The results validate the parasite's classification in the Glugea genus. Nevertheless, until more detailed ultrastructural and molecular data are obtained, the identification of the current Glugea species is hampered by the absence of some developmental stages and the high degree of genetic similarity.
期刊介绍:
The Journal of Eukaryotic Microbiology publishes original research on protists, including lower algae and fungi. Articles are published covering all aspects of these organisms, including their behavior, biochemistry, cell biology, chemotherapy, development, ecology, evolution, genetics, molecular biology, morphogenetics, parasitology, systematics, and ultrastructure.