{"title":"Mechanical, thermophysical, and ablation properties of C/HfC–SiC composites with various SiC/HfC ratios","authors":"Chunlei Yan, Fangming Liu, Wei Wang, Rongjun Liu","doi":"10.1111/ijac.14878","DOIUrl":null,"url":null,"abstract":"The mechanical, thermophysical, and ablation properties of 2.5D C/HfC–SiC composites with various SiC/HfC ratios are studied. The S7‐C/HfC–SiC composite with a high SiC/HfC volume ratio of 30.4/15.2 has the highest flexural strength of 203.4 ± 26.8 MPa and fracture toughness of 10.0 ± .5 MPa·m<jats:sup>1/2</jats:sup>. All C/HfC–SiC composites have a similar low thermal conductivity of ∼2 W·m<jats:sup>−1</jats:sup>·K<jats:sup>−1</jats:sup> and their CTEs are in the range of .45–4.0 × 10<jats:sup>−6</jats:sup>/K from 30°C to 1400°C. S5‐C/HfC–SiC with medium SiC/HfC ratio possesses the lowest mass ablation rate of .29 ± .02 mg·cm<jats:sup>−2</jats:sup>·s<jats:sup>−1</jats:sup> and linear ablation rate of .003 ± .0002 mm/s. The C/HfC–SiC composites are endowed with a pitting corrosion feature according to the morphology and composition evolution of the ablated surface, which results from both high temperature and stagnation pressure gradients in the radial direction of the oxyacetylene torch.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"12 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/ijac.14878","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical, thermophysical, and ablation properties of 2.5D C/HfC–SiC composites with various SiC/HfC ratios are studied. The S7‐C/HfC–SiC composite with a high SiC/HfC volume ratio of 30.4/15.2 has the highest flexural strength of 203.4 ± 26.8 MPa and fracture toughness of 10.0 ± .5 MPa·m1/2. All C/HfC–SiC composites have a similar low thermal conductivity of ∼2 W·m−1·K−1 and their CTEs are in the range of .45–4.0 × 10−6/K from 30°C to 1400°C. S5‐C/HfC–SiC with medium SiC/HfC ratio possesses the lowest mass ablation rate of .29 ± .02 mg·cm−2·s−1 and linear ablation rate of .003 ± .0002 mm/s. The C/HfC–SiC composites are endowed with a pitting corrosion feature according to the morphology and composition evolution of the ablated surface, which results from both high temperature and stagnation pressure gradients in the radial direction of the oxyacetylene torch.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;