{"title":"Microstructure and tribological properties of CrVN thin film coated WC‐Co tool after boriding process","authors":"Khokha Lalaoui, Mounia Belaid, Nasser Eddine Beliardouh, Kheireddine Bouzid, Samira Tlili, Latifa Kahloul, Karima Boudjeda, Chems Eddine Ramoul","doi":"10.1111/ijac.14896","DOIUrl":null,"url":null,"abstract":"The tribological performance of the tungsten carbide substrate (WC‐Co), improved by ceramic coatings, is still being reported in new studies that have been carried out to date. It has become a hot research topic that are widely applied in hard material research, especially in the tools manufacturing fields. This study was conducted to investigate the wear characteristics of a commercial cemented carbide tool (WC‐Co) coated with a physical vapor deposition chromium‐vanadium nitride film (CrVN), followed by a boriding process as a final thermochemical treatment. Tested in dry sliding contact against an alumina ball as a static partner, the tribological responses of the specimen were analyzed and compared with an uncoated specimen. Friction coefficients, calculated from volume loss, were around .58 for all specimens except the uncoated specimen at 10 N of applied load. Wear scar analyses revealed the occurrence of several wear mechanisms that is polishing, oxidation, wear debris formation, surface binder removal, grain fragmenting, and grain pull‐out.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"43 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/ijac.14896","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The tribological performance of the tungsten carbide substrate (WC‐Co), improved by ceramic coatings, is still being reported in new studies that have been carried out to date. It has become a hot research topic that are widely applied in hard material research, especially in the tools manufacturing fields. This study was conducted to investigate the wear characteristics of a commercial cemented carbide tool (WC‐Co) coated with a physical vapor deposition chromium‐vanadium nitride film (CrVN), followed by a boriding process as a final thermochemical treatment. Tested in dry sliding contact against an alumina ball as a static partner, the tribological responses of the specimen were analyzed and compared with an uncoated specimen. Friction coefficients, calculated from volume loss, were around .58 for all specimens except the uncoated specimen at 10 N of applied load. Wear scar analyses revealed the occurrence of several wear mechanisms that is polishing, oxidation, wear debris formation, surface binder removal, grain fragmenting, and grain pull‐out.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;