{"title":"Novel method of fabricating lightweight thermally insulation fibrous composites for energy saving","authors":"Danyang Qiu, Shujing Li, Yuanbing Li, Zhen Cai, Chengzhen Fu, ChangDong Wei","doi":"10.1111/ijac.14905","DOIUrl":null,"url":null,"abstract":"Fiberboard (FB) is extensively utilized in heat‐insulating refractory materials owing to its lightweight nature and excellent resistance to high temperatures. Nevertheless, the inadequate mechanical properties and limited dimensional stability of FB hinder its further application. The vacuum filtration was utilized in this study to manufacture inorganically modified insulation FB, incorporating plus fiber/1260 fiber and silica sol as the primary constituents and sepiolite powder (HS) as the modifier. The experimental results show that the fabricated samples exhibited extremely high porosity (75.3%–90.2%) and low thermal conductivity (.063–.15 W m<jats:sup>−1</jats:sup> K<jats:sup>−1</jats:sup>, 200–800°C). The fibers were arranged in a three‐dimensional structure, overlapping with each other, and the silica sol adhered to the fibers, forming a spatial mesh structure through cross‐linking. Importantly, the incorporation of HS was effective in controlling the agglomeration of the silica sol, leading to a more uniform distribution within the fibers. Additionally, the study found that the mechanical properties (high hardness (64–72 HA)) and high‐temperature durability of the FBs were enhanced due to the flocculant modification. This study highlights promising prospects for industrial applications and offers a cost‐effective admixture for modifying and preparing high‐performance FBs, which is expected to see broad adoption in thermal insulation and energy conservation applications.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/ijac.14905","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Fiberboard (FB) is extensively utilized in heat‐insulating refractory materials owing to its lightweight nature and excellent resistance to high temperatures. Nevertheless, the inadequate mechanical properties and limited dimensional stability of FB hinder its further application. The vacuum filtration was utilized in this study to manufacture inorganically modified insulation FB, incorporating plus fiber/1260 fiber and silica sol as the primary constituents and sepiolite powder (HS) as the modifier. The experimental results show that the fabricated samples exhibited extremely high porosity (75.3%–90.2%) and low thermal conductivity (.063–.15 W m−1 K−1, 200–800°C). The fibers were arranged in a three‐dimensional structure, overlapping with each other, and the silica sol adhered to the fibers, forming a spatial mesh structure through cross‐linking. Importantly, the incorporation of HS was effective in controlling the agglomeration of the silica sol, leading to a more uniform distribution within the fibers. Additionally, the study found that the mechanical properties (high hardness (64–72 HA)) and high‐temperature durability of the FBs were enhanced due to the flocculant modification. This study highlights promising prospects for industrial applications and offers a cost‐effective admixture for modifying and preparing high‐performance FBs, which is expected to see broad adoption in thermal insulation and energy conservation applications.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;