Piezo‐biphasic scaffold based on polycaprolactone containing BaTiO3 and hydroxyapatite nanoparticles using three‐dimensional printing for bone regeneration
Roza Salehi Sadati, Hossein Eslami, Mohammad Rafienia, Mojtaba Ansari
{"title":"Piezo‐biphasic scaffold based on polycaprolactone containing BaTiO3 and hydroxyapatite nanoparticles using three‐dimensional printing for bone regeneration","authors":"Roza Salehi Sadati, Hossein Eslami, Mohammad Rafienia, Mojtaba Ansari","doi":"10.1111/ijac.14906","DOIUrl":null,"url":null,"abstract":"The present study intends to establish biphasic composite scaffolds containing polycaprolactone/hydroxyapatite (PCL/HA) and PCL/barium titanate (PCL/BT) layers with improved mechanical and biological properties by preserving HA and tuning BT contents. The porous piezo‐biphasic scaffolds were fabricated, using extrusion three‐dimensional printer technology, and on the basis of the scanning electron microscopy results, a relative porosity of 210–250 µm was created. The presence of BT phase in the biphasic scaffolds was confirmed by X‐ray diffraction and Fourier transform infrared analyses. The printed biphasic composites demonstrate suitable mechanical strength compared to one containing only 35% PCL and 65% HA compositions, which had a strength of 2.5 MPa. However, the strength for 80% BT‐incorporated biphasic composite was almost 13.5 times higher than that of monolithic specimen. The measured output voltages for the scaffolds after being subjected to an electric field affirmed that adding BT nanoparticles in biphasic composites leads to an increase in the output voltage that was lower compared to the monolithic scaffold. The piezo‐biphasic scaffold containing 80% BT is found to possess the highest enhancement in cytocompatibility for MG63 cells with the survival rate of approximately 95%, rendering the PCL/HA–PCL/BT biphasic scaffolds promising candidates for bone regeneration.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/ijac.14906","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The present study intends to establish biphasic composite scaffolds containing polycaprolactone/hydroxyapatite (PCL/HA) and PCL/barium titanate (PCL/BT) layers with improved mechanical and biological properties by preserving HA and tuning BT contents. The porous piezo‐biphasic scaffolds were fabricated, using extrusion three‐dimensional printer technology, and on the basis of the scanning electron microscopy results, a relative porosity of 210–250 µm was created. The presence of BT phase in the biphasic scaffolds was confirmed by X‐ray diffraction and Fourier transform infrared analyses. The printed biphasic composites demonstrate suitable mechanical strength compared to one containing only 35% PCL and 65% HA compositions, which had a strength of 2.5 MPa. However, the strength for 80% BT‐incorporated biphasic composite was almost 13.5 times higher than that of monolithic specimen. The measured output voltages for the scaffolds after being subjected to an electric field affirmed that adding BT nanoparticles in biphasic composites leads to an increase in the output voltage that was lower compared to the monolithic scaffold. The piezo‐biphasic scaffold containing 80% BT is found to possess the highest enhancement in cytocompatibility for MG63 cells with the survival rate of approximately 95%, rendering the PCL/HA–PCL/BT biphasic scaffolds promising candidates for bone regeneration.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;