On the Support of Anomalous Dissipation Measures

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Luigi De Rosa, Theodore D. Drivas, Marco Inversi
{"title":"On the Support of Anomalous Dissipation Measures","authors":"Luigi De Rosa,&nbsp;Theodore D. Drivas,&nbsp;Marco Inversi","doi":"10.1007/s00021-024-00894-z","DOIUrl":null,"url":null,"abstract":"<div><p>By means of a unifying measure-theoretic approach, we establish lower bounds on the Hausdorff dimension of the space-time set which can support anomalous dissipation for weak solutions of fluid equations, both in the presence or absence of a physical boundary. Boundary dissipation, which can occur at both the time and the spatial boundary, is analyzed by suitably modifying the Duchon &amp; Robert interior distributional approach. One implication of our results is that any bounded Euler solution (compressible or incompressible) arising as a zero viscosity limit of Navier–Stokes solutions cannot have anomalous dissipation supported on a set of dimension smaller than that of the space. This result is sharp, as demonstrated by entropy-producing shock solutions of compressible Euler (Drivas and Eyink in Commun Math Phys 359(2):733–763, 2018. https://doi.org/10.1007/s00220-017-3078-4; Majda in Am Math Soc 43(281):93, 1983. https://doi.org/10.1090/memo/0281) and by recent constructions of dissipative incompressible Euler solutions (Brue and De Lellis in Commun Math Phys 400(3):1507–1533, 2023. https://doi.org/10.1007/s00220-022-04626-0 624; Brue et al. in Commun Pure App Anal, 2023), as well as passive scalars (Colombo et al. in Ann PDE 9(2):21–48, 2023. https://doi.org/10.1007/s40818-023-00162-9; Drivas et al. in Arch Ration Mech Anal 243(3):1151–1180, 2022. https://doi.org/10.1007/s00205-021-01736-2). For <span>\\(L^q_tL^r_x\\)</span> suitable Leray–Hopf solutions of the <span>\\(d-\\)</span>dimensional Navier–Stokes equation we prove a bound of the dissipation in terms of the Parabolic Hausdorff measure <span>\\(\\mathcal {P}^{s}\\)</span>, which gives <span>\\(s=d-2\\)</span> as soon as the solution lies in the Prodi–Serrin class. In the three-dimensional case, this matches with the Caffarelli–Kohn–Nirenberg partial regularity.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-024-00894-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00894-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

By means of a unifying measure-theoretic approach, we establish lower bounds on the Hausdorff dimension of the space-time set which can support anomalous dissipation for weak solutions of fluid equations, both in the presence or absence of a physical boundary. Boundary dissipation, which can occur at both the time and the spatial boundary, is analyzed by suitably modifying the Duchon & Robert interior distributional approach. One implication of our results is that any bounded Euler solution (compressible or incompressible) arising as a zero viscosity limit of Navier–Stokes solutions cannot have anomalous dissipation supported on a set of dimension smaller than that of the space. This result is sharp, as demonstrated by entropy-producing shock solutions of compressible Euler (Drivas and Eyink in Commun Math Phys 359(2):733–763, 2018. https://doi.org/10.1007/s00220-017-3078-4; Majda in Am Math Soc 43(281):93, 1983. https://doi.org/10.1090/memo/0281) and by recent constructions of dissipative incompressible Euler solutions (Brue and De Lellis in Commun Math Phys 400(3):1507–1533, 2023. https://doi.org/10.1007/s00220-022-04626-0 624; Brue et al. in Commun Pure App Anal, 2023), as well as passive scalars (Colombo et al. in Ann PDE 9(2):21–48, 2023. https://doi.org/10.1007/s40818-023-00162-9; Drivas et al. in Arch Ration Mech Anal 243(3):1151–1180, 2022. https://doi.org/10.1007/s00205-021-01736-2). For \(L^q_tL^r_x\) suitable Leray–Hopf solutions of the \(d-\)dimensional Navier–Stokes equation we prove a bound of the dissipation in terms of the Parabolic Hausdorff measure \(\mathcal {P}^{s}\), which gives \(s=d-2\) as soon as the solution lies in the Prodi–Serrin class. In the three-dimensional case, this matches with the Caffarelli–Kohn–Nirenberg partial regularity.

论异常耗散度量的支持
通过统一的度量理论方法,我们建立了时空集合豪斯多夫维度的下限,该维度可以支持流体方程弱解的反常耗散,无论是否存在物理边界。边界耗散既可能发生在时间边界,也可能发生在空间边界,我们通过适当修改 Duchon & Robert 内部分布方法对边界耗散进行了分析。我们结果的一个含义是,作为纳维-斯托克斯解的零粘度极限而产生的任何有界欧拉解(可压缩或不可压缩),都不可能在维度小于空间维度的集合上支持异常耗散。这一结果是尖锐的,可压缩欧拉的产生熵的冲击解(Drivas 和 Eyink 在 Commun Math Phys 359(2):733-763, 2018. https://doi.org/10.1007/s00220-017-3078-4; Majda 在 Am Math Soc 43(281):93, 1983. https://doi.org/10.1090/memo/0281)以及最近的耗散不可压缩欧拉解的构造(Brue 和 De Lellis 在 Commun Math Phys 400(3):1507-1533, 2023.https://doi.org/10.1007/s00220-022-04626-0 624;Brue 等人在 Commun Pure App Anal,2023),以及被动标量(Colombo 等人在 Ann PDE 9(2):21-48,2023。https://doi.org/10.1007/s40818-023-00162-9;Drivas 等人在 Arch Ration Mech Anal 243(3):1151-1180,2022。https://doi.org/10.1007/s00205-021-01736-2)。对于(L^q_tL^r_x\)维纳维-斯托克斯方程的合适勒雷-霍普夫解,我们用抛物线豪斯多夫量\(\mathcal {P}^{s}\)证明了耗散的约束,只要解位于普罗迪-塞林类,就可以得到\(s=d-2\)。在三维情况下,这与 Caffarelli-Kohn-Nirenberg 部分正则性相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信