P. Vinass Jamali, I. P. Sudagar, P. Senthamaraikannan, P. Aruna, P. Sudha, S. Selvakumar
{"title":"Comprehensive characterisation of raw and alkalized sugarcane bagasse fibres","authors":"P. Vinass Jamali, I. P. Sudagar, P. Senthamaraikannan, P. Aruna, P. Sudha, S. Selvakumar","doi":"10.1007/s13399-024-06063-6","DOIUrl":null,"url":null,"abstract":"<p>Over millennia, natural fibres have been utilised to create essential materials for human life, and as a result, their properties have evolved to enhance their utility, durability, and aesthetic appeal. According to this study, polyethene materials can be replaced by fibres from sugarcane bagasse (<i>Saccharum officinarum</i>), which will have a less negative effect on the environment. Advanced techniques were employed to extract the fibres, and a comprehensive analysis of the physical chemical and mechanical properties was conducted. The study analysed the variations in the fibres’ aspects, along with the impacts of the mercerization. The key objectives of this research include optimising alkalization parameters to enhance fibre properties, evaluating their potential in composite materials and bio-based products, assessing environmental impacts, and addressing gaps in current knowledge. The study contributes to advancing sustainable materials science and engineering practices centred around sugarcane bagasse fibres by filling these research needs. After alkali treatment, SB fibres’ cellulose content increased by 27 to 32%. The mechanical qualities have improved by around 36–45% due to the NaOH treatment process, indicating that these fibres can replace plastic trays.</p>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"21 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-06063-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Over millennia, natural fibres have been utilised to create essential materials for human life, and as a result, their properties have evolved to enhance their utility, durability, and aesthetic appeal. According to this study, polyethene materials can be replaced by fibres from sugarcane bagasse (Saccharum officinarum), which will have a less negative effect on the environment. Advanced techniques were employed to extract the fibres, and a comprehensive analysis of the physical chemical and mechanical properties was conducted. The study analysed the variations in the fibres’ aspects, along with the impacts of the mercerization. The key objectives of this research include optimising alkalization parameters to enhance fibre properties, evaluating their potential in composite materials and bio-based products, assessing environmental impacts, and addressing gaps in current knowledge. The study contributes to advancing sustainable materials science and engineering practices centred around sugarcane bagasse fibres by filling these research needs. After alkali treatment, SB fibres’ cellulose content increased by 27 to 32%. The mechanical qualities have improved by around 36–45% due to the NaOH treatment process, indicating that these fibres can replace plastic trays.
期刊介绍:
Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.