Kinetic and thermodynamic analysis of co-pyrolysis of rice straw and polystyrene

IF 3.5 4区 工程技术 Q3 ENERGY & FUELS
Kumari Anshu, Sonal K. Thengane
{"title":"Kinetic and thermodynamic analysis of co-pyrolysis of rice straw and polystyrene","authors":"Kumari Anshu, Sonal K. Thengane","doi":"10.1007/s13399-024-06047-6","DOIUrl":null,"url":null,"abstract":"<p>The present work investigates the co-pyrolysis of rice straw (RS) and polystyrene (PS) using a thermogravimetric analyzer to understand the kinetics and synergistic effect between the two feedstocks. Seven samples, namely, RS, PS, PS 0.05 (5 wt.% PS), PS 0.1 (10 wt.% PS), PS 0.2 (20 wt.% PS), PS 0.3 (30 wt.% PS), and PS 0.4 (40 wt.% PS) are used for the analysis. Two pyrolysis performance indices: devolatilization index (DI) and heat resistance index (HRI), are estimated to respectively analyze the volatiles release potential and thermal stability of the samples. Activation energy values are estimated using seven different iso-conversional models whereas the pre-exponential factor (A) is determined by the Kissinger equation and reaction order is determined using Avrami theory. The average apparent activation energy for different blends varies from 140.26 kJ/mol to 224.17 kJ/mol, with a minimum value obtained for PS 0.3 (135.71 kJ/mol) followed by PS 0.1 (139.95 kJ/mol) and PS 0.05 (140.27 kJ/mol). The reaction order concerning different temperatures and Criado master plot results reflect that RS, PS, and their respective blends followed a complex pyrolysis/co-pyrolysis reaction mechanism. The kinetic parameters gained via the most accurate Vyazovkin method are used to estimate Gibbs free energy (∆G), enthalpy (∆H), and entropy (∆S) values. The estimated kinetic and thermodynamic parameters predicted PS 0.05, PS 0.1, and PS 0.3 as attractive blends for co-pyrolysis. Additionally, an artificial neural network (ANN) model is developed to predict the thermal decomposition of samples based on temperature, heating rate, and blending ratio. This study provides essential information for understanding the reaction mechanism and reactor design for RS and PS co-pyrolysis.</p>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"6 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-06047-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The present work investigates the co-pyrolysis of rice straw (RS) and polystyrene (PS) using a thermogravimetric analyzer to understand the kinetics and synergistic effect between the two feedstocks. Seven samples, namely, RS, PS, PS 0.05 (5 wt.% PS), PS 0.1 (10 wt.% PS), PS 0.2 (20 wt.% PS), PS 0.3 (30 wt.% PS), and PS 0.4 (40 wt.% PS) are used for the analysis. Two pyrolysis performance indices: devolatilization index (DI) and heat resistance index (HRI), are estimated to respectively analyze the volatiles release potential and thermal stability of the samples. Activation energy values are estimated using seven different iso-conversional models whereas the pre-exponential factor (A) is determined by the Kissinger equation and reaction order is determined using Avrami theory. The average apparent activation energy for different blends varies from 140.26 kJ/mol to 224.17 kJ/mol, with a minimum value obtained for PS 0.3 (135.71 kJ/mol) followed by PS 0.1 (139.95 kJ/mol) and PS 0.05 (140.27 kJ/mol). The reaction order concerning different temperatures and Criado master plot results reflect that RS, PS, and their respective blends followed a complex pyrolysis/co-pyrolysis reaction mechanism. The kinetic parameters gained via the most accurate Vyazovkin method are used to estimate Gibbs free energy (∆G), enthalpy (∆H), and entropy (∆S) values. The estimated kinetic and thermodynamic parameters predicted PS 0.05, PS 0.1, and PS 0.3 as attractive blends for co-pyrolysis. Additionally, an artificial neural network (ANN) model is developed to predict the thermal decomposition of samples based on temperature, heating rate, and blending ratio. This study provides essential information for understanding the reaction mechanism and reactor design for RS and PS co-pyrolysis.

Abstract Image

稻草和聚苯乙烯共热解的动力学和热力学分析
本研究使用热重分析仪研究了稻草(RS)和聚苯乙烯(PS)的共热解,以了解这两种原料的动力学和协同效应。分析使用了七种样品,即 RS、PS、PS 0.05(5 wt.%)、PS 0.1(10 wt.%)、PS 0.2(20 wt.%)、PS 0.3(30 wt.%)和 PS 0.4(40 wt.%)。估算了两个热解性能指标:降解指数(DI)和耐热指数(HRI),以分别分析样品的挥发物释放潜力和热稳定性。活化能值使用七种不同的等转换模型进行估算,而预指数(A)则由基辛格方程确定,反应顺序由阿夫拉米理论确定。不同混合物的平均表观活化能从 140.26 kJ/mol 到 224.17 kJ/mol 不等,PS 0.3 的表观活化能最小(135.71 kJ/mol),其次是 PS 0.1(139.95 kJ/mol)和 PS 0.05(140.27 kJ/mol)。不同温度下的反应顺序和 Criado 主图结果反映出 RS、PS 和它们各自的混合物遵循复杂的热解/共热解反应机理。通过最精确的 Vyazovkin 方法获得的动力学参数用于估算吉布斯自由能(ΔG)、焓(ΔH)和熵(ΔS)值。根据动力学和热力学参数的估算,PS 0.05、PS 0.1 和 PS 0.3 对共热解具有吸引力。此外,还建立了一个人工神经网络(ANN)模型,根据温度、加热速率和混合比例预测样品的热分解。这项研究为了解 RS 和 PS 共热解的反应机理和反应器设计提供了重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomass Conversion and Biorefinery
Biomass Conversion and Biorefinery Energy-Renewable Energy, Sustainability and the Environment
CiteScore
7.00
自引率
15.00%
发文量
1358
期刊介绍: Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信