Recycling of spent seawater produced by land-based seaweed cultivation for the production of value-added products from a marine microalga Chlorella sp.

IF 3.5 4区 工程技术 Q3 ENERGY & FUELS
V. Isaimozhi, Venkatesan Ajithkumar, Bhavika Mehta, R. M. Lavanya, Abantika Majumder, S. Dinesh Kumar, Vaibhav A. Mantri, Ramalingam Dineshkumar
{"title":"Recycling of spent seawater produced by land-based seaweed cultivation for the production of value-added products from a marine microalga Chlorella sp.","authors":"V. Isaimozhi, Venkatesan Ajithkumar, Bhavika Mehta, R. M. Lavanya, Abantika Majumder, S. Dinesh Kumar, Vaibhav A. Mantri, Ramalingam Dineshkumar","doi":"10.1007/s13399-024-06108-w","DOIUrl":null,"url":null,"abstract":"<p>Edible seaweeds have gained significant interest among the nutraceutical industries due to their rich content of amino acids, fatty acids, and minerals. The tank cultivation of edible seaweed like <i>Ulva</i> sp. generates a significant amount of spent seawater, which must either be reused or treated for safe discharge into coastal waters. This study aims to utilize spent seawater from <i>Ulva</i> sp. grown tanks for the production of marine microalgal biomass, focusing on the extraction of high-value lutein and protein. Accordingly, three major pre-treatment methods—autoclaving, filtration, and chlorination—were performed on spent seawater, both with and without medium supplementation, followed by the cultivation of marine <i>Chlorella</i> sp. 1151 as a model microalga. Among the treatment methods, spent seawater either sterilized by autoclave or chlorination with medium addition resulted in higher biomass (0.91–1.03 g L<sup>−1</sup>), lutein (1.10–1.88 mg g<sup>−1</sup>), and protein (64.86 – 68.83 mg g<sup>−1</sup>) yields, which were almost comparable to those obtained with fresh seawater supplemented with medium. <i>Chlorella</i> sp. 1151 efficiently utilized nitrate and phosphate by 95–97% in the spent seawater for the optimal experimental combinations as stated above. Further, analysis of heavy metals including Co, Cu, Fe, Mn, Zn, Ba, Ni, Mo, Pb, Cr, and Cd in the cultivated spent seawater were well below the permissible limits for safe discharge. This study demonstrates the novel approach of repurposing spent seawater from seaweed cultivation for the production of marine microalgal biomass- based lutein and protein.</p>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"28 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-06108-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Edible seaweeds have gained significant interest among the nutraceutical industries due to their rich content of amino acids, fatty acids, and minerals. The tank cultivation of edible seaweed like Ulva sp. generates a significant amount of spent seawater, which must either be reused or treated for safe discharge into coastal waters. This study aims to utilize spent seawater from Ulva sp. grown tanks for the production of marine microalgal biomass, focusing on the extraction of high-value lutein and protein. Accordingly, three major pre-treatment methods—autoclaving, filtration, and chlorination—were performed on spent seawater, both with and without medium supplementation, followed by the cultivation of marine Chlorella sp. 1151 as a model microalga. Among the treatment methods, spent seawater either sterilized by autoclave or chlorination with medium addition resulted in higher biomass (0.91–1.03 g L−1), lutein (1.10–1.88 mg g−1), and protein (64.86 – 68.83 mg g−1) yields, which were almost comparable to those obtained with fresh seawater supplemented with medium. Chlorella sp. 1151 efficiently utilized nitrate and phosphate by 95–97% in the spent seawater for the optimal experimental combinations as stated above. Further, analysis of heavy metals including Co, Cu, Fe, Mn, Zn, Ba, Ni, Mo, Pb, Cr, and Cd in the cultivated spent seawater were well below the permissible limits for safe discharge. This study demonstrates the novel approach of repurposing spent seawater from seaweed cultivation for the production of marine microalgal biomass- based lutein and protein.

Abstract Image

回收陆基海藻养殖产生的废海水,利用海洋微藻小球藻生产增值产品
由于食用海藻含有丰富的氨基酸、脂肪酸和矿物质,因此在保健品行业引起了极大的兴趣。莼菜等食用海藻的水槽栽培会产生大量废海水,这些废海水必须重新利用或经过处理才能安全地排放到沿海水域。本研究旨在利用莼菜养殖池的废海水生产海洋微藻生物质,重点是提取高价值的叶黄素和蛋白质。因此,对废海水进行了三种主要的预处理方法--高压灭菌、过滤和氯化,包括添加和不添加培养基,然后培养海洋小球藻 1151 作为模式微藻。在各种处理方法中,用高压锅灭菌或氯化处理并添加培养基的废海水可获得较高的生物量(0.91-1.03 g L-1)、叶黄素(1.10-1.88 mg g-1)和蛋白质(64.86-68.83 mg g-1)产量,与添加培养基的新鲜海水的产量几乎相当。在上述最佳实验组合中,小球藻 1151 有效利用了废海水中 95-97% 的硝酸盐和磷酸盐。此外,对培养废海水中的重金属(包括钴、铜、铁、锰、锌、钡、镍、钼、铅、铬和镉)进行的分析结果显示,其含量远低于安全排放的允许限值。这项研究展示了将海藻养殖废海水重新用于生产基于海洋微藻生物质的叶黄素和蛋白质的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomass Conversion and Biorefinery
Biomass Conversion and Biorefinery Energy-Renewable Energy, Sustainability and the Environment
CiteScore
7.00
自引率
15.00%
发文量
1358
期刊介绍: Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信