Parkinson’s LRRK2-G2019S risk gene mutation drives sex-specific behavioral and cellular adaptations to chronic variable stress

IF 2.6 3区 医学 Q2 BEHAVIORAL SCIENCES
Christopher A. Guevara, Kumayl Alloo, Swati Gupta, Romario Thomas, Pamela del Valle, Alexandra R. Magee, Deanna L. Benson, George W. Huntley
{"title":"Parkinson’s LRRK2-G2019S risk gene mutation drives sex-specific behavioral and cellular adaptations to chronic variable stress","authors":"Christopher A. Guevara, Kumayl Alloo, Swati Gupta, Romario Thomas, Pamela del Valle, Alexandra R. Magee, Deanna L. Benson, George W. Huntley","doi":"10.3389/fnbeh.2024.1445184","DOIUrl":null,"url":null,"abstract":"Anxiety is a psychiatric non-motor symptom of Parkinson’s that can appear in the prodromal period, prior to significant loss of midbrain dopamine neurons and motor symptoms. Parkinson’s-related anxiety affects females more than males, despite the greater prevalence of Parkinson’s in males. How stress, anxiety and Parkinson’s are related and the basis for a sex-specific impact of stress in Parkinson’s are not clear. We addressed this using young adult male and female mice carrying a G2019S knockin mutation of leucine-rich repeat kinase 2 (<jats:italic>Lrrk2</jats:italic><jats:sup>G2019S</jats:sup>) and <jats:italic>Lrrk2</jats:italic><jats:sup>WT</jats:sup> control mice. In humans, <jats:italic>LRRK2</jats:italic><jats:sup>G2019S</jats:sup> significantly elevates the risk of late-onset Parkinson’s. To assess within-sex differences between <jats:italic>Lrrk2</jats:italic><jats:sup>G2019S</jats:sup> and control mice in stress-induced anxiety-like behaviors in young adulthood, we used a within-subject design whereby <jats:italic>Lrrk2</jats:italic><jats:sup>G2019S</jats:sup> and <jats:italic>Lrrk2</jats:italic><jats:sup>WT</jats:sup> control mice underwent tests of anxiety-like behaviors before (baseline) and following a 28 day (d) variable stress paradigm. There were no differences in behavioral measures between genotypes in males or females at baseline, indicating that the mutation alone does not produce anxiety-like responses. Following chronic stress, male <jats:italic>Lrrk2</jats:italic><jats:sup>G2019S</jats:sup> mice were affected similarly to male wildtypes except for novelty-suppressed feeding, where stress had no impact on <jats:italic>Lrrk2</jats:italic><jats:sup>G2019S</jats:sup> mice while significantly increasing latency to feed in <jats:italic>Lrrk2</jats:italic><jats:sup>WT</jats:sup> control mice. Female <jats:italic>Lrrk2</jats:italic><jats:sup>G2019S</jats:sup> mice were impacted by chronic stress similarly to wildtype females across all behavioral measures. Subsequent post-stress analyses compared cFos immunolabeling-based cellular activity patterns across several stress-relevant brain regions. The density of cFos-activated neurons across brain regions in both male and female <jats:italic>Lrrk2</jats:italic><jats:sup>G2019S</jats:sup> mice was generally lower compared to stressed <jats:italic>Lrrk2</jats:italic><jats:sup>WT</jats:sup> mice, except for the nucleus accumbens of male <jats:italic>Lrrk2</jats:italic><jats:sup>G2019S</jats:sup> mice, where cFos-labeled cell density was significantly higher than all other groups. Together, these data suggest that the <jats:italic>Lrrk2</jats:italic><jats:sup>G2019S</jats:sup> mutation differentially impacts anxiety-like behavioral responses to chronic stress in males and females that may reflect sex-specific adaptations observed in circuit activation patterns in some, but not all stress-related brain regions.","PeriodicalId":12368,"journal":{"name":"Frontiers in Behavioral Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Behavioral Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnbeh.2024.1445184","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Anxiety is a psychiatric non-motor symptom of Parkinson’s that can appear in the prodromal period, prior to significant loss of midbrain dopamine neurons and motor symptoms. Parkinson’s-related anxiety affects females more than males, despite the greater prevalence of Parkinson’s in males. How stress, anxiety and Parkinson’s are related and the basis for a sex-specific impact of stress in Parkinson’s are not clear. We addressed this using young adult male and female mice carrying a G2019S knockin mutation of leucine-rich repeat kinase 2 (Lrrk2G2019S) and Lrrk2WT control mice. In humans, LRRK2G2019S significantly elevates the risk of late-onset Parkinson’s. To assess within-sex differences between Lrrk2G2019S and control mice in stress-induced anxiety-like behaviors in young adulthood, we used a within-subject design whereby Lrrk2G2019S and Lrrk2WT control mice underwent tests of anxiety-like behaviors before (baseline) and following a 28 day (d) variable stress paradigm. There were no differences in behavioral measures between genotypes in males or females at baseline, indicating that the mutation alone does not produce anxiety-like responses. Following chronic stress, male Lrrk2G2019S mice were affected similarly to male wildtypes except for novelty-suppressed feeding, where stress had no impact on Lrrk2G2019S mice while significantly increasing latency to feed in Lrrk2WT control mice. Female Lrrk2G2019S mice were impacted by chronic stress similarly to wildtype females across all behavioral measures. Subsequent post-stress analyses compared cFos immunolabeling-based cellular activity patterns across several stress-relevant brain regions. The density of cFos-activated neurons across brain regions in both male and female Lrrk2G2019S mice was generally lower compared to stressed Lrrk2WT mice, except for the nucleus accumbens of male Lrrk2G2019S mice, where cFos-labeled cell density was significantly higher than all other groups. Together, these data suggest that the Lrrk2G2019S mutation differentially impacts anxiety-like behavioral responses to chronic stress in males and females that may reflect sex-specific adaptations observed in circuit activation patterns in some, but not all stress-related brain regions.
帕金森氏症 LRRK2-G2019S 风险基因突变促使不同性别的行为和细胞适应慢性可变压力
焦虑是帕金森病的一种精神性非运动症状,可在中脑多巴胺神经元显著丧失和出现运动症状之前的前驱期出现。与帕金森病相关的焦虑症对女性的影响大于男性,尽管帕金森病在男性中的发病率更高。压力、焦虑和帕金森病之间的关系以及压力对帕金森病的性别特异性影响的基础尚不清楚。我们利用携带富亮氨酸重复激酶 2(LRRK2G2019S)G2019S 基因敲入突变的年轻成年雄性小鼠和雌性小鼠以及 LRRK2WT 对照小鼠解决了这一问题。在人类中,LRRK2G2019S 会显著增加晚发帕金森病的风险。为了评估 Lrrk2G2019S 和对照组小鼠成年后在应激诱导的焦虑样行为方面的性别内差异,我们采用了受试者内设计,即 Lrrk2G2019S 和 Lrrk2WT 对照组小鼠在 28 天(d)可变应激范式之前(基线)和之后接受焦虑样行为测试。在基线时,雄性和雌性基因型之间的行为测量结果没有差异,这表明该基因突变本身不会产生焦虑样反应。长期应激后,雄性 Lrrk2G2019S 小鼠受到的影响与雄性野生型小鼠类似,但新奇抑制性进食除外,应激对 Lrrk2G2019S 小鼠没有影响,而 Lrrk2WT 对照小鼠的进食潜伏期则显著增加。在所有行为测量中,雌性 Lrrk2G2019S 小鼠受慢性应激的影响与野生型雌性小鼠相似。随后的应激后分析比较了几个应激相关脑区基于 cFos 免疫标记的细胞活动模式。与应激的 Lrrk2WT 小鼠相比,雄性和雌性 Lrrk2G2019S 小鼠各脑区的 cFos 激活神经元密度普遍较低,但雄性 Lrrk2G2019S 小鼠的伏隔核除外,该区域的 cFos 标记细胞密度明显高于其他所有组别。这些数据共同表明,Lrrk2G2019S 突变对雄性和雌性对慢性应激的焦虑样行为反应产生了不同的影响,这可能反映了在某些(而非所有)应激相关脑区的回路激活模式中观察到的性别特异性适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Behavioral Neuroscience
Frontiers in Behavioral Neuroscience BEHAVIORAL SCIENCES-NEUROSCIENCES
CiteScore
4.70
自引率
3.30%
发文量
506
审稿时长
6-12 weeks
期刊介绍: Frontiers in Behavioral Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the neural mechanisms underlying behavior. Field Chief Editor Nuno Sousa at the Instituto de Pesquisa em Ciências da Vida e da Saúde (ICVS) is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide. This journal publishes major insights into the neural mechanisms of animal and human behavior, and welcomes articles studying the interplay between behavior and its neurobiological basis at all levels: from molecular biology and genetics, to morphological, biochemical, neurochemical, electrophysiological, neuroendocrine, pharmacological, and neuroimaging studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信