{"title":"Experimental Study on the Efficiency of Hydrogel on Suppressing Thermal Runaway Propagation of Lithium-Ion Battery","authors":"Chunyuan Liu, Guowei Zhang, Diping Yuan, Liming Jiang, Yafei Fan, Depeng Kong","doi":"10.1007/s10694-024-01631-8","DOIUrl":null,"url":null,"abstract":"<p>To promptly and efficaciously extinguish fires involving lithium-ion batteries and address the issues of prolonged firefighting duration and substantial water usage within the domain of fire safety, this study explores the suppressive impact of hydrogel on the thermal runaway in high-capacity lithium-ion batteries utilized in electric vehicles. Firstly, the 135 Ah lithium-ion battery used in electric vehicles was used as the test object, which was subjected to thermal runaway through electric heating. On this basis, water and hydrogel fire extinguishing experiments were carried out. Secondly, the microstructure of the hydrogel after heat treatment was observed under environmental scanning electron microscope. The results show that hydrogel has better cooling and thermal runaway control effects than water. The cooling effect of 10 kg hydrogel can be twice that of 20 kg water. At the same time, the interval time of prolonged thermal runaway propagation of hydrogel is more than three times that of water with the same dose, which can bring longer safety time for rescue and escape. Furthermore, the superior cooling mechanism of hydrogel is attributed to its ability to adhere to heated surfaces, thereby enhancing the utilization of its internal water content for sustained cooling.</p>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"2016 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10694-024-01631-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To promptly and efficaciously extinguish fires involving lithium-ion batteries and address the issues of prolonged firefighting duration and substantial water usage within the domain of fire safety, this study explores the suppressive impact of hydrogel on the thermal runaway in high-capacity lithium-ion batteries utilized in electric vehicles. Firstly, the 135 Ah lithium-ion battery used in electric vehicles was used as the test object, which was subjected to thermal runaway through electric heating. On this basis, water and hydrogel fire extinguishing experiments were carried out. Secondly, the microstructure of the hydrogel after heat treatment was observed under environmental scanning electron microscope. The results show that hydrogel has better cooling and thermal runaway control effects than water. The cooling effect of 10 kg hydrogel can be twice that of 20 kg water. At the same time, the interval time of prolonged thermal runaway propagation of hydrogel is more than three times that of water with the same dose, which can bring longer safety time for rescue and escape. Furthermore, the superior cooling mechanism of hydrogel is attributed to its ability to adhere to heated surfaces, thereby enhancing the utilization of its internal water content for sustained cooling.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.