Abdullah Al Mamun, Md Imranul Islam, Md Abu Sayeed Shohag, Wael Al-Kouz, KM Abdun Noor
{"title":"Multilinear principal component analysis-based tensor decomposition for fabric weave pattern recognition from high-dimensional streaming data","authors":"Abdullah Al Mamun, Md Imranul Islam, Md Abu Sayeed Shohag, Wael Al-Kouz, KM Abdun Noor","doi":"10.1007/s10044-024-01318-4","DOIUrl":null,"url":null,"abstract":"<p>Modern textile industry integrates video sensors with automated fabric reeling systems for real-time fabric weave pattern inspection. This automation system lessens the human-vision-based cognitive load and improves fabric weave pattern inspection work. However, this automation system poses a unique challenge, particularly when dealing with high-dimensional streaming data from highly precision digital microscope cameras. The complexity arises from the continuous acquisition and management of such high-dimensional streaming video data. Considering the challenges posed by dimensionality reduction in high-dimensional data, this study employs multilinear principal component analysis (MPCA)-based tensor decomposition, a statistical technique designed to effectively reduce high-dimensional datasets into low-dimensional features. This paper proposes an innovative method for fabric weave pattern recognition (FWPR) by leveraging MPCA-based tensor decomposition to extract low-dimensional features from the high-dimensional fabric’s surface texture descriptor tensor (STDT). This proposed method replicates fabric pattern monitoring in automated fabric reeling systems by integrating a digital microscope camera to capture high-dimensional streaming video data from fabric surface texture features. Subsequently high-dimensional video data is converted into sequential image frames representing different fabric weave patterns. These image frames are processed with local binary pattern (LBP) and gray-level co-occurrence matrix (GLCM) methods to aggregate fabric’s surface pattern features and construct the high-dimensional STDT. This STDT is subsequently decomposed into low-dimensional features by leveraging MPCA, resulting in an impressive 99.99% reduction in dimension. A supervised machine learning method utilizes the extracted low-dimensional features to enable FWPR, demonstrating superiority of the proposed method over the benchmark methods in evaluation.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"11 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01318-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Modern textile industry integrates video sensors with automated fabric reeling systems for real-time fabric weave pattern inspection. This automation system lessens the human-vision-based cognitive load and improves fabric weave pattern inspection work. However, this automation system poses a unique challenge, particularly when dealing with high-dimensional streaming data from highly precision digital microscope cameras. The complexity arises from the continuous acquisition and management of such high-dimensional streaming video data. Considering the challenges posed by dimensionality reduction in high-dimensional data, this study employs multilinear principal component analysis (MPCA)-based tensor decomposition, a statistical technique designed to effectively reduce high-dimensional datasets into low-dimensional features. This paper proposes an innovative method for fabric weave pattern recognition (FWPR) by leveraging MPCA-based tensor decomposition to extract low-dimensional features from the high-dimensional fabric’s surface texture descriptor tensor (STDT). This proposed method replicates fabric pattern monitoring in automated fabric reeling systems by integrating a digital microscope camera to capture high-dimensional streaming video data from fabric surface texture features. Subsequently high-dimensional video data is converted into sequential image frames representing different fabric weave patterns. These image frames are processed with local binary pattern (LBP) and gray-level co-occurrence matrix (GLCM) methods to aggregate fabric’s surface pattern features and construct the high-dimensional STDT. This STDT is subsequently decomposed into low-dimensional features by leveraging MPCA, resulting in an impressive 99.99% reduction in dimension. A supervised machine learning method utilizes the extracted low-dimensional features to enable FWPR, demonstrating superiority of the proposed method over the benchmark methods in evaluation.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.