{"title":"Small object detection based on YOLOv8 in UAV perspective","authors":"Tao Ning, Wantong Wu, Jin Zhang","doi":"10.1007/s10044-024-01323-7","DOIUrl":null,"url":null,"abstract":"<p>Unmanned aerial vehicle (UAV) image object detection is a challenging task, primarily due to various factors such as multi-scale objects, a high proportion of small objects, significant overlap between objects, poor image quality, and complex and dynamic scenes. To address these challenges, several improvements were made to the YOLOv8 model. Firstly, by pruning the feature mapping layers responsible for detecting large objects in the YOLOv8 model, significant reduction in computational resources was achieved, rendering the model more lightweight. Simultaneously, a detection head fused with self-attention was introduced simultaneously to enhance the detection capability for small objects. Secondly, the introduction of space depth convolution in place of the original convolutional striding and pooling operations facilitates more effective preservation of details in low-resolution images and small objects. Lastly, a multi-level feature fusion module was designed to merge feature maps from different network layers, enhancing the network's representation capability. Results on the Visdrone dataset demonstrate that the proposed model achieved a significant 4.7% improvement in mAP50 compared to YOLOv8, while reducing the parameter count to only 39% of the original model. Moreover, transfer experiments on the TT100k dataset showed a 3.2% increase in mAP50, validating the effectiveness of the improved model for small object detection tasks in UAV images. Our code is made available at https://github.com/Wtgonw/Imporved-yolov8.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"7 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01323-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Unmanned aerial vehicle (UAV) image object detection is a challenging task, primarily due to various factors such as multi-scale objects, a high proportion of small objects, significant overlap between objects, poor image quality, and complex and dynamic scenes. To address these challenges, several improvements were made to the YOLOv8 model. Firstly, by pruning the feature mapping layers responsible for detecting large objects in the YOLOv8 model, significant reduction in computational resources was achieved, rendering the model more lightweight. Simultaneously, a detection head fused with self-attention was introduced simultaneously to enhance the detection capability for small objects. Secondly, the introduction of space depth convolution in place of the original convolutional striding and pooling operations facilitates more effective preservation of details in low-resolution images and small objects. Lastly, a multi-level feature fusion module was designed to merge feature maps from different network layers, enhancing the network's representation capability. Results on the Visdrone dataset demonstrate that the proposed model achieved a significant 4.7% improvement in mAP50 compared to YOLOv8, while reducing the parameter count to only 39% of the original model. Moreover, transfer experiments on the TT100k dataset showed a 3.2% increase in mAP50, validating the effectiveness of the improved model for small object detection tasks in UAV images. Our code is made available at https://github.com/Wtgonw/Imporved-yolov8.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.