Jessica E. Sanow , Steven R. Fassnacht , Kazuyoshi Suzuki
{"title":"How does a dynamic surface roughness affect snowpack modeling?","authors":"Jessica E. Sanow , Steven R. Fassnacht , Kazuyoshi Suzuki","doi":"10.1016/j.polar.2024.101110","DOIUrl":null,"url":null,"abstract":"<div><p>The SNOWPACK model is a cryosphere model which incorporates several environmental model parameters, one of which being the aerodynamic roughness length (<em>z</em><sub><em>0</em></sub>). The <em>z</em><sub><em>0</em></sub> is considered a static parameter, however, research has shown that the <em>z</em><sub><em>0</em></sub> of the surface is variable due to the changing nature of the snowpack surface throughout the winter season. This study highlights the sensitivity of the <em>z</em><sub><em>0</em></sub> within the SNOWPACK model based on the outputs of sublimation, SWE, and sensible heat. The <em>z</em><sub><em>0</em></sub> values were calculated in two ways, anemometrically (<em>z</em><sub><em>0-A</em></sub>), using a wind profile, and geometrically (<em>z</em><sub><em>0-G</em></sub>), measuring surface geometry. Calculated <em>z</em><sub><em>0-A</em></sub> values were between 1.03 × 10<sup>−6</sup> to 0.12 m. The <em>z</em><sub><em>0-G</em></sub> values were calculated from a terrestrial lidar scan using various resolution values of post-process resolutions. These resolutions of 0.01, 0.1, and 1 m resulted in <em>z</em><sub><em>0-G</em></sub> values of 0.26, 0.08, and 0.01 m, respectively. Therefore, as the resolution coarsened, the <em>z</em><sub><em>0-G</em></sub> values decreased. Lastly, these calculated <em>z</em><sub><em>0-G</em></sub> values, a variable run, using weekly measured <em>z</em><sub><em>0-G</em></sub> values, and 0.002 (SNOWPACK default), 0.02, and 0.2 m values were incorporated into the SNOWPACK model. When applied, cumulative sublimation, SWE, and sensible heat outputs varied by 131%, −71%, and −49%, when compared to the default <em>z</em><sub><em>0</em></sub> value used within the model.</p></div>","PeriodicalId":20316,"journal":{"name":"Polar Science","volume":"41 ","pages":"Article 101110"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873965224000938","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The SNOWPACK model is a cryosphere model which incorporates several environmental model parameters, one of which being the aerodynamic roughness length (z0). The z0 is considered a static parameter, however, research has shown that the z0 of the surface is variable due to the changing nature of the snowpack surface throughout the winter season. This study highlights the sensitivity of the z0 within the SNOWPACK model based on the outputs of sublimation, SWE, and sensible heat. The z0 values were calculated in two ways, anemometrically (z0-A), using a wind profile, and geometrically (z0-G), measuring surface geometry. Calculated z0-A values were between 1.03 × 10−6 to 0.12 m. The z0-G values were calculated from a terrestrial lidar scan using various resolution values of post-process resolutions. These resolutions of 0.01, 0.1, and 1 m resulted in z0-G values of 0.26, 0.08, and 0.01 m, respectively. Therefore, as the resolution coarsened, the z0-G values decreased. Lastly, these calculated z0-G values, a variable run, using weekly measured z0-G values, and 0.002 (SNOWPACK default), 0.02, and 0.2 m values were incorporated into the SNOWPACK model. When applied, cumulative sublimation, SWE, and sensible heat outputs varied by 131%, −71%, and −49%, when compared to the default z0 value used within the model.
期刊介绍:
Polar Science is an international, peer-reviewed quarterly journal. It is dedicated to publishing original research articles for sciences relating to the polar regions of the Earth and other planets. Polar Science aims to cover 15 disciplines which are listed below; they cover most aspects of physical sciences, geosciences and life sciences, together with engineering and social sciences. Articles should attract the interest of broad polar science communities, and not be limited to the interests of those who work under specific research subjects. Polar Science also has an Open Archive whereby published articles are made freely available from ScienceDirect after an embargo period of 24 months from the date of publication.
- Space and upper atmosphere physics
- Atmospheric science/climatology
- Glaciology
- Oceanography/sea ice studies
- Geology/petrology
- Solid earth geophysics/seismology
- Marine Earth science
- Geomorphology/Cenozoic-Quaternary geology
- Meteoritics
- Terrestrial biology
- Marine biology
- Animal ecology
- Environment
- Polar Engineering
- Humanities and social sciences.