A Duty-Cycle-Error-Immune Reference Frequency Doubling Technique for Fractional-N Digital PLLs

IF 5.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Amr I. Eissa;Enrique Alvarez-Fontecilla;Colin Weltin-Wu;Ian Galton
{"title":"A Duty-Cycle-Error-Immune Reference Frequency Doubling Technique for Fractional-N Digital PLLs","authors":"Amr I. Eissa;Enrique Alvarez-Fontecilla;Colin Weltin-Wu;Ian Galton","doi":"10.1109/TCSI.2024.3439210","DOIUrl":null,"url":null,"abstract":"Increasing a PLL’s reference frequency offers significant performance advantages, but doing so by increasing the PLL’s crystal oscillator frequency is not a viable option in many applications. Instead, a frequency doubler can be used to derive a reference signal with twice the frequency of the crystal oscillator, but conventional PLLs are highly sensitive to the crystal oscillator’s duty cycle error in such cases. Prior solutions to this problem involve calibration techniques which impose convergence speed versus accuracy tradeoffs. In contrast, this paper proposes a system modification which makes a PLL immune to such duty cycle errors without the need for calibration. The technique is presented and analyzed in the context of a delta-sigma frequency-to-digital converter (\n<inline-formula> <tex-math>$\\Delta \\Sigma $ </tex-math></inline-formula>\n-FDC) based PLL. Analysis and behavioral simulations with nonideal circuit parameters show that the worst-case convergence time is at least 10 times faster than that of the prior techniques. Additionally, the proposed \n<inline-formula> <tex-math>$\\Delta \\Sigma $ </tex-math></inline-formula>\n-FDC includes other modifications which improve its performance relative to comparable prior \n<inline-formula> <tex-math>$\\Delta \\Sigma $ </tex-math></inline-formula>\n-FDCs.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"71 10","pages":"4524-4537"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10654370/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing a PLL’s reference frequency offers significant performance advantages, but doing so by increasing the PLL’s crystal oscillator frequency is not a viable option in many applications. Instead, a frequency doubler can be used to derive a reference signal with twice the frequency of the crystal oscillator, but conventional PLLs are highly sensitive to the crystal oscillator’s duty cycle error in such cases. Prior solutions to this problem involve calibration techniques which impose convergence speed versus accuracy tradeoffs. In contrast, this paper proposes a system modification which makes a PLL immune to such duty cycle errors without the need for calibration. The technique is presented and analyzed in the context of a delta-sigma frequency-to-digital converter ( $\Delta \Sigma $ -FDC) based PLL. Analysis and behavioral simulations with nonideal circuit parameters show that the worst-case convergence time is at least 10 times faster than that of the prior techniques. Additionally, the proposed $\Delta \Sigma $ -FDC includes other modifications which improve its performance relative to comparable prior $\Delta \Sigma $ -FDCs.
用于分数-N$ 数字 PLL 的占空比-误差-免疫参考频率倍增技术
提高 PLL 的参考频率具有显著的性能优势,但在许多应用中,通过提高 PLL 晶体振荡器的频率并不可行。相反,可以使用倍频器得出两倍于晶体振荡器频率的参考信号,但在这种情况下,传统 PLL 对晶体振荡器的占空比误差非常敏感。之前解决这一问题的方法涉及校准技术,需要在收敛速度与精度之间做出权衡。与此相反,本文提出了一种系统改造方案,使 PLL 无需校准即可免受占空比误差的影响。本文介绍并分析了基于三角Σ频数转换器($Delta \Sigma $ -FDC)的 PLL 技术。使用非理想电路参数进行的分析和行为仿真表明,最坏情况下的收敛时间比先前的技术至少快 10 倍。此外,所提出的 $Delta \Sigma $ -FDC 还包括其他一些修改,相对于之前可比的 $Delta \Sigma $ -FDC 来说,这些修改提高了其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Circuits and Systems I: Regular Papers
IEEE Transactions on Circuits and Systems I: Regular Papers 工程技术-工程:电子与电气
CiteScore
9.80
自引率
11.80%
发文量
441
审稿时长
2 months
期刊介绍: TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信