An investigation of the electrical dynamics in electroactive polymer transducers with resistive electrodes

IF 3.7 3区 材料科学 Q1 INSTRUMENTS & INSTRUMENTATION
Davide Vignotto, Antonello Cherubini, Ion-Dan Sîrbu, Marco Fontana, Giacomo Moretti
{"title":"An investigation of the electrical dynamics in electroactive polymer transducers with resistive electrodes","authors":"Davide Vignotto, Antonello Cherubini, Ion-Dan Sîrbu, Marco Fontana, Giacomo Moretti","doi":"10.1088/1361-665x/ad6960","DOIUrl":null,"url":null,"abstract":"To pursue a variable-capacitance working principle, transducers based on soft electroactive polymers (EAPs) need deformable electrodes that match the compliance and stretchability of the EAP polymeric substrates. A variety of manufacturing procedures are available to create conductive materials that can achieve this, including solutions that can provide remarkably low resistivity. However, the simplest and most feasible options often involve the use of particle-filled (e.g. carbon-filled) polymer composites, which, while easy to produce, tend to exhibit relatively high resistivity. This high level of resistivity, combined with the inherent capacitance of EAP transducers, introduces dynamic effects in the devices electrical activation, which may affect performance. This paper investigates the impact of electrode resistivity on the electrical dynamics of EAP devices, combining continuum models and experimental validations. We use a continuum generalisation of known resistive-capacitive (RC) transmission line models to accurately predict voltage gradients on the surfaces of electrostatic transducers subject to rapidly varying voltages. We then present an experimental validation by measuring the spatial voltage distributions over carbon-based polymeric electrodes of dielectric elastomer (DE) transducers, and find a good agreement with our model predictions. We use our validated model to provide general estimates of the typical charging time and limit working frequency ranges of DE devices as a function of their dimensional scale and electrode sheet resistance. Our model provides useful indications for designing compliant electrodes in EAP transducers given target performance, or to understand the working limits of devices with given geometry and dielectric-electrode properties.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"9 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad6960","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

To pursue a variable-capacitance working principle, transducers based on soft electroactive polymers (EAPs) need deformable electrodes that match the compliance and stretchability of the EAP polymeric substrates. A variety of manufacturing procedures are available to create conductive materials that can achieve this, including solutions that can provide remarkably low resistivity. However, the simplest and most feasible options often involve the use of particle-filled (e.g. carbon-filled) polymer composites, which, while easy to produce, tend to exhibit relatively high resistivity. This high level of resistivity, combined with the inherent capacitance of EAP transducers, introduces dynamic effects in the devices electrical activation, which may affect performance. This paper investigates the impact of electrode resistivity on the electrical dynamics of EAP devices, combining continuum models and experimental validations. We use a continuum generalisation of known resistive-capacitive (RC) transmission line models to accurately predict voltage gradients on the surfaces of electrostatic transducers subject to rapidly varying voltages. We then present an experimental validation by measuring the spatial voltage distributions over carbon-based polymeric electrodes of dielectric elastomer (DE) transducers, and find a good agreement with our model predictions. We use our validated model to provide general estimates of the typical charging time and limit working frequency ranges of DE devices as a function of their dimensional scale and electrode sheet resistance. Our model provides useful indications for designing compliant electrodes in EAP transducers given target performance, or to understand the working limits of devices with given geometry and dielectric-electrode properties.
带电阻电极的电活性聚合物传感器的电气动态研究
为了实现可变电容工作原理,基于软性电活性聚合物(EAP)的传感器需要与 EAP 聚合物基底的顺应性和伸展性相匹配的可变形电极。目前有多种制造程序可用于制造实现这一目标的导电材料,包括可提供极低电阻率的解决方案。不过,最简单可行的方案通常是使用颗粒填充(如碳填充)聚合物复合材料,这种材料虽然易于生产,但往往会表现出相对较高的电阻率。这种高电阻率与 EAP 传感器的固有电容相结合,在设备的电激活中引入了动态效应,可能会影响性能。本文结合连续模型和实验验证,研究了电极电阻率对 EAP 器件电气动态的影响。我们使用已知的电阻电容(RC)传输线模型的连续概括,来准确预测受快速变化电压影响的静电传感器表面的电压梯度。然后,我们通过测量介电弹性体(DE)传感器碳基聚合物电极上的空间电压分布进行了实验验证,发现与我们的模型预测结果非常吻合。我们利用经过验证的模型,对介电弹性体器件的典型充电时间和极限工作频率范围进行了一般估算,并将其作为其尺寸比例和电极片电阻的函数。我们的模型为设计具有目标性能的 EAP 传感器中的顺应性电极提供了有用的指示,或者为了解具有特定几何形状和电介质-电极特性的器件的工作极限提供了有用的指示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Materials and Structures
Smart Materials and Structures 工程技术-材料科学:综合
CiteScore
7.50
自引率
12.20%
发文量
317
审稿时长
3 months
期刊介绍: Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures. A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信