Charging properties of atactic poly(styrene) microfibre mats charged with electrospinning and corona charging

IF 3.7 3区 材料科学 Q1 INSTRUMENTS & INSTRUMENTATION
Mitsuo Kaneko, Kenichi Takagaki, Rintaro Tsuchimoto, Yuya Ishii
{"title":"Charging properties of atactic poly(styrene) microfibre mats charged with electrospinning and corona charging","authors":"Mitsuo Kaneko, Kenichi Takagaki, Rintaro Tsuchimoto, Yuya Ishii","doi":"10.1088/1361-665x/ad6bd8","DOIUrl":null,"url":null,"abstract":"Electrospinning is a versatile technique widely used to produce polymer fibres with diameters ranging from several micrometres to tens of nanometres. This unique technique enables the production of thin fibres and charges the fibres in parallel. However, precise comparisons between electrospinning and other charging techniques have been limited. In this study, the charging properties of electrospun microfibre mats fabricated using atactic poly(styrene) (aPS) were compared with those of corona-charged microfibre mats fabricated using the same material (aPS) and possessing the same structure. The results showed that the surface potentials of electrospun aPS fibre mats were approximately three times higher than those of corona-charged fibre mats, demonstrating that a significantly large amount of charge could be stored in electrospun fibre mats. A large amount of stored charge was maintained even after 240 d of storage in low-humidity, atmospheric, and high-humidity environments. Furthermore, mathematical models explaining the effective surface charge densities of electrospun and corona-charged fibre mats were proposed using the recently proposed model of stored charge distribution in fibre mats. Therefore, the clarified unique charging properties of electrospun aPS microfibre mats originally charged via electrospinning pave the way for the development of appropriate applications of electrospun charged polymer microfibres, submicrofibres, and nanofibres.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"14 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad6bd8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Electrospinning is a versatile technique widely used to produce polymer fibres with diameters ranging from several micrometres to tens of nanometres. This unique technique enables the production of thin fibres and charges the fibres in parallel. However, precise comparisons between electrospinning and other charging techniques have been limited. In this study, the charging properties of electrospun microfibre mats fabricated using atactic poly(styrene) (aPS) were compared with those of corona-charged microfibre mats fabricated using the same material (aPS) and possessing the same structure. The results showed that the surface potentials of electrospun aPS fibre mats were approximately three times higher than those of corona-charged fibre mats, demonstrating that a significantly large amount of charge could be stored in electrospun fibre mats. A large amount of stored charge was maintained even after 240 d of storage in low-humidity, atmospheric, and high-humidity environments. Furthermore, mathematical models explaining the effective surface charge densities of electrospun and corona-charged fibre mats were proposed using the recently proposed model of stored charge distribution in fibre mats. Therefore, the clarified unique charging properties of electrospun aPS microfibre mats originally charged via electrospinning pave the way for the development of appropriate applications of electrospun charged polymer microfibres, submicrofibres, and nanofibres.
电纺丝和电晕充电的非接触聚(苯乙烯)微纤维毡的充电特性
电纺丝是一种多功能技术,广泛用于生产直径从几微米到几十纳米的聚合物纤维。这种独特的技术可以生产细纤维,并对纤维进行平行充电。然而,电纺丝与其他充电技术之间的精确比较还很有限。在这项研究中,使用无规聚苯乙烯(aPS)制造的电纺丝微纤维毡的充电特性与使用相同材料(aPS)和具有相同结构的电晕充电微纤维毡的充电特性进行了比较。结果表明,电纺 aPS 纤维毡的表面电位约为电晕充电纤维毡的三倍,这表明电纺纤维毡中可存储大量电荷。在低湿度、大气和高湿度环境中储存 240 天后,仍能保持大量储存电荷。此外,利用最近提出的纤维毡中存储电荷分布模型,提出了解释电纺纤维毡和电晕充电纤维毡有效表面电荷密度的数学模型。因此,阐明了最初通过电纺丝带电的电纺 aPS 微纤维毡的独特带电特性,为开发电纺带电聚合物微纤维、亚微纤维和纳米纤维的适当应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Materials and Structures
Smart Materials and Structures 工程技术-材料科学:综合
CiteScore
7.50
自引率
12.20%
发文量
317
审稿时长
3 months
期刊介绍: Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures. A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信