{"title":"Shear wave velocity in a functionally graded piezoelectric semiconductor plate clamped on a rigid base","authors":"Shreya Shukla, Sanjeev A Sahu","doi":"10.1088/1361-665x/ad7430","DOIUrl":null,"url":null,"abstract":"This paper investigates the propagation of horizontally polarized shear waves in a piezoelectric semiconductor (PSC) layered structure. The modal consists of a pre-stressed PSC thin plate atop an elastic dielectric half-space joined perfectly at the interface. It is postulated that the material parameters and initial stress exhibit an exponential variation exclusively along the depth. The velocity equation of the considered wave is analytically obtained based on the traction-free boundary conditions. Numerical examples have been employed to examine the influences of several parameters, including semiconducting properties, material gradient index, initial stresses, external biasing electric field, and PSC film thickness, on the characteristics of the wave. Graphs have been generated to visualize the dependency of wave velocity and attenuation on these factors. The wave’s velocity and damping properties are significantly influenced by the thickness and steady state carrier density of the PSC plate. Besides yielding critical results, current findings are instrumental in designing high-frequency SAW devices.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"6 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad7430","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the propagation of horizontally polarized shear waves in a piezoelectric semiconductor (PSC) layered structure. The modal consists of a pre-stressed PSC thin plate atop an elastic dielectric half-space joined perfectly at the interface. It is postulated that the material parameters and initial stress exhibit an exponential variation exclusively along the depth. The velocity equation of the considered wave is analytically obtained based on the traction-free boundary conditions. Numerical examples have been employed to examine the influences of several parameters, including semiconducting properties, material gradient index, initial stresses, external biasing electric field, and PSC film thickness, on the characteristics of the wave. Graphs have been generated to visualize the dependency of wave velocity and attenuation on these factors. The wave’s velocity and damping properties are significantly influenced by the thickness and steady state carrier density of the PSC plate. Besides yielding critical results, current findings are instrumental in designing high-frequency SAW devices.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.