{"title":"Ultrasonic guided wave damage localization method for composite fan blades based on damage-scattered wave difference","authors":"Hailong Liu, Meiao Huang, Qingchen Zhang, Qijian Liu, Yishou Wang, Xinlin Qing","doi":"10.1088/1361-665x/ad742e","DOIUrl":null,"url":null,"abstract":"Ultrasonic guided wave (UGW) has a wide monitoring range and high accuracy, showing promise for monitoring damage in large-area composite fan blades. However, the multi-curvature characteristics of engine composite fan blades and their anisotropic material properties make damage localization difficult with conventional UGW monitoring methods. In order to realize the UGW damage monitoring of the blade, this paper proposes a damage localization method based on damage-scattered wave differences. This method addresses the challenge of locating damage in multi-curvature composite blades. First, the difference between the mutual excitation in a pair of sensors and the damage-scattered waves captured at reception was analyzed. It is concluded that the closer the damage is to the receiving sensor, the greater the damage index (DI). Next, a DI ratio of the mutually excited and received signals is computed for each sensor pair. This ratio is used to draw a vertical line on the propagation path, identified as the damage likelihood line (DLL). Finally, the DLL corresponding to the three largest DIs is selected, and their intersections were used for damage localization. A time-domain truncated signal processing method is proposed to enable the DI to more accurately represent the effects of damage and improve the localization accuracy of the method. An experiment on damage localization was conducted on a homemade composite fan blade, where the damage was tested at various locations and sizes. The results show that the damage localization on the blade is good and 3 mm tiny damage localization is achieved.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"17 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad742e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasonic guided wave (UGW) has a wide monitoring range and high accuracy, showing promise for monitoring damage in large-area composite fan blades. However, the multi-curvature characteristics of engine composite fan blades and their anisotropic material properties make damage localization difficult with conventional UGW monitoring methods. In order to realize the UGW damage monitoring of the blade, this paper proposes a damage localization method based on damage-scattered wave differences. This method addresses the challenge of locating damage in multi-curvature composite blades. First, the difference between the mutual excitation in a pair of sensors and the damage-scattered waves captured at reception was analyzed. It is concluded that the closer the damage is to the receiving sensor, the greater the damage index (DI). Next, a DI ratio of the mutually excited and received signals is computed for each sensor pair. This ratio is used to draw a vertical line on the propagation path, identified as the damage likelihood line (DLL). Finally, the DLL corresponding to the three largest DIs is selected, and their intersections were used for damage localization. A time-domain truncated signal processing method is proposed to enable the DI to more accurately represent the effects of damage and improve the localization accuracy of the method. An experiment on damage localization was conducted on a homemade composite fan blade, where the damage was tested at various locations and sizes. The results show that the damage localization on the blade is good and 3 mm tiny damage localization is achieved.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.