Multifunctional 1D/2D silver nanowires/MXene-based fabric strain sensors for emergency rescue

IF 3.7 3区 材料科学 Q1 INSTRUMENTS & INSTRUMENTATION
Jiayu Xie, Ying Zhang, Huajun Wang, Qingqing Liu, Jingqiang He and Ronghui Guo
{"title":"Multifunctional 1D/2D silver nanowires/MXene-based fabric strain sensors for emergency rescue","authors":"Jiayu Xie, Ying Zhang, Huajun Wang, Qingqing Liu, Jingqiang He and Ronghui Guo","doi":"10.1088/1361-665x/ad765b","DOIUrl":null,"url":null,"abstract":"Monitoring the vital signs of the injured in accidents is crucial in emergency rescue process. Fabric-based sensing devices show a vast range of potential applications in wearable healthcare monitoring, human motion and thermal management due to their wearable flexibility and high sensitivity. Nevertheless, flexible electronic devices for both precise monitoring of health under low strain and motion under large strain are still a challenge in extremely harsh environment. Therefore, development of sensors with both high sensitivity and wide strain range remains a formidable challenge. Herein, a wearable flexible strain sensor with a one-dimensional/two-dimensional (1D/2D) composite conductive network was developed for healthcare and motion monitoring and thermal management by coating 1D silver nanowires (AgNWs) and 2D Ti3C2Tx MXene composite films on nylon/spandex blended knitted fabric (MANS). The MANS strain sensor can simultaneously achieve high sensitivity (gauge factor for up to 267), a wide range of detection (1%–115%), excellent repeatability and cycling stability (1000 cycles). The sensor can be utilized for human health monitoring including heartbeat, pulse detection, breathing and various human motion. Moreover, the MANS sensor also has the electrical heating properties and voltage control temperature between 20 °C–110 °C can achieved at low voltage. In addition, the MANS shows hydrophobicity with water contact angle of 137.1°. The MXene/AgNWs composite conductive layer with high sensitivity under low and large strains, electrical thermal conversion, and hydrophobicity has great potential for precisely monitoring health and motion of the injured in emergency rescue in harsh environment.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"14 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad765b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring the vital signs of the injured in accidents is crucial in emergency rescue process. Fabric-based sensing devices show a vast range of potential applications in wearable healthcare monitoring, human motion and thermal management due to their wearable flexibility and high sensitivity. Nevertheless, flexible electronic devices for both precise monitoring of health under low strain and motion under large strain are still a challenge in extremely harsh environment. Therefore, development of sensors with both high sensitivity and wide strain range remains a formidable challenge. Herein, a wearable flexible strain sensor with a one-dimensional/two-dimensional (1D/2D) composite conductive network was developed for healthcare and motion monitoring and thermal management by coating 1D silver nanowires (AgNWs) and 2D Ti3C2Tx MXene composite films on nylon/spandex blended knitted fabric (MANS). The MANS strain sensor can simultaneously achieve high sensitivity (gauge factor for up to 267), a wide range of detection (1%–115%), excellent repeatability and cycling stability (1000 cycles). The sensor can be utilized for human health monitoring including heartbeat, pulse detection, breathing and various human motion. Moreover, the MANS sensor also has the electrical heating properties and voltage control temperature between 20 °C–110 °C can achieved at low voltage. In addition, the MANS shows hydrophobicity with water contact angle of 137.1°. The MXene/AgNWs composite conductive layer with high sensitivity under low and large strains, electrical thermal conversion, and hydrophobicity has great potential for precisely monitoring health and motion of the injured in emergency rescue in harsh environment.
用于紧急救援的基于 1D/2D 银纳米线/MXene 的多功能织物应变传感器
监测事故中伤员的生命体征对紧急救援过程至关重要。基于织物的传感设备因其可穿戴的灵活性和高灵敏度,在可穿戴医疗保健监测、人体运动和热管理方面显示出巨大的应用潜力。然而,在极端恶劣的环境中,要同时实现低应变下的健康精确监测和大应变下的运动精确监测,柔性电子设备仍然是一项挑战。因此,开发具有高灵敏度和宽应变范围的传感器仍然是一项艰巨的挑战。本文通过在尼龙/氨纶混纺针织物(MANS)上涂覆一维银纳米线(AgNWs)和二维Ti3C2Tx MXene复合薄膜,开发了一种具有一维/二维(1D/2D)复合导电网络的可穿戴柔性应变传感器,用于医疗保健、运动监测和热管理。MANS 应变传感器可同时实现高灵敏度(测量系数高达 267)、宽检测范围(1%-115%)、优异的重复性和循环稳定性(1000 次)。该传感器可用于人体健康监测,包括心跳、脉搏检测、呼吸和各种人体运动。此外,MANS 传感器还具有电加热特性,可在低电压下实现 20 °C-110 °C 的电压控制温度。此外,MANS 还具有疏水性,水接触角为 137.1°。MXene/AgNWs 复合导电层具有在低应变和大应变下的高灵敏度、电热转换和疏水性,在恶劣环境下的紧急救援中精确监测伤员的健康和运动状况方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Materials and Structures
Smart Materials and Structures 工程技术-材料科学:综合
CiteScore
7.50
自引率
12.20%
发文量
317
审稿时长
3 months
期刊介绍: Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures. A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信