Optimizing PID control for enhanced stability of a 16‐DOF biped robot during ditch crossing

IF 4.2 2区 计算机科学 Q2 ROBOTICS
Moh Shahid Khan, Ravi Kumar Mandava, Vijay Panchore
{"title":"Optimizing PID control for enhanced stability of a 16‐DOF biped robot during ditch crossing","authors":"Moh Shahid Khan, Ravi Kumar Mandava, Vijay Panchore","doi":"10.1002/rob.22425","DOIUrl":null,"url":null,"abstract":"The current research article discusses the design of a proportional–integral–derivative (PID) controller to obtain the optimal gait planning algorithm for a 16‐degrees‐of‐freedom biped robot while crossing the ditch. The gait planning algorithm integrates an initial posture, position, and desired trajectories of the robot's wrist, hip, and foot. A cubic polynomial trajectory is assigned for wrist, hip, and foot trajectories to generate the motion. The foot and wrist joint angles of the biped robot along the polynomial trajectory are obtained by using the inverse kinematics approach. Moreover, the dynamic balance margin was estimated by using the concept of the zero‐moment point. To enhance the smooth motion of the gait planner and reduce the error between two consecutive joint angles, the authors designed a PID controller for each joint of the biped robot. To design a PID controller, the dynamics of the biped robot are essential, and it was obtained using the Lagrange–Euler formulation. The gains, that is, <jats:italic>K</jats:italic><jats:sub><jats:italic>P</jats:italic></jats:sub>, <jats:italic>K</jats:italic><jats:sub><jats:italic>D</jats:italic></jats:sub>, and <jats:italic>K</jats:italic><jats:sub><jats:italic>I</jats:italic></jats:sub> of the PID controller are tuned with nontraditional optimization algorithms, such as particle swarm optimization (PSO), differential evolution (DE), and compared with modified chaotic invasive weed optimization (MCIWO) algorithms. The result indicates that the MCIWO‐PID controller generates more dynamically balanced gaits when compared with the DE and PSO‐PID controllers.","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"108 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/rob.22425","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The current research article discusses the design of a proportional–integral–derivative (PID) controller to obtain the optimal gait planning algorithm for a 16‐degrees‐of‐freedom biped robot while crossing the ditch. The gait planning algorithm integrates an initial posture, position, and desired trajectories of the robot's wrist, hip, and foot. A cubic polynomial trajectory is assigned for wrist, hip, and foot trajectories to generate the motion. The foot and wrist joint angles of the biped robot along the polynomial trajectory are obtained by using the inverse kinematics approach. Moreover, the dynamic balance margin was estimated by using the concept of the zero‐moment point. To enhance the smooth motion of the gait planner and reduce the error between two consecutive joint angles, the authors designed a PID controller for each joint of the biped robot. To design a PID controller, the dynamics of the biped robot are essential, and it was obtained using the Lagrange–Euler formulation. The gains, that is, KP, KD, and KI of the PID controller are tuned with nontraditional optimization algorithms, such as particle swarm optimization (PSO), differential evolution (DE), and compared with modified chaotic invasive weed optimization (MCIWO) algorithms. The result indicates that the MCIWO‐PID controller generates more dynamically balanced gaits when compared with the DE and PSO‐PID controllers.
优化 PID 控制,增强 16-DOF 双足机器人在穿越沟渠时的稳定性
本研究文章讨论了比例积分派生(PID)控制器的设计,以获得 16 自由度双足机器人在穿越沟渠时的最佳步态规划算法。步态规划算法整合了初始姿态、位置以及机器人手腕、臀部和脚的期望轨迹。为腕部、髋部和足部轨迹分配了三次多项式轨迹,以生成运动。双足机器人沿多项式轨迹的脚和腕关节角度是通过逆运动学方法获得的。此外,还利用零时刻点的概念估算了动态平衡裕度。为了增强步态规划器的平滑运动并减少两个连续关节角度之间的误差,作者为双足机器人的每个关节设计了一个 PID 控制器。要设计一个 PID 控制器,双足机器人的动力学特性是必不可少的。利用粒子群优化(PSO)、微分进化(DE)等非传统优化算法对 PID 控制器的增益(即 KP、KD 和 KI)进行了调整,并与改进的混沌入侵杂草优化(MCIWO)算法进行了比较。结果表明,与 DE 和 PSO-PID 控制器相比,MCIWO-PID 控制器能产生更多的动态平衡步态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信