Design and Analysis of a Push Shovel‐Type Hull‐Cleaning Wall‐Climbing Robot

IF 4.2 2区 计算机科学 Q2 ROBOTICS
Pei Yang, Jidong Jia, Lingyu Sun, Minglu Zhang, Delong Lv
{"title":"Design and Analysis of a Push Shovel‐Type Hull‐Cleaning Wall‐Climbing Robot","authors":"Pei Yang, Jidong Jia, Lingyu Sun, Minglu Zhang, Delong Lv","doi":"10.1002/rob.22430","DOIUrl":null,"url":null,"abstract":"To address the problem of difficulty in removing marine biofouling due to the variable curvature of the ship wall, this study proposed a marine biofouling removal wall‐climbing robot equipped with an adaptive variable curvature wall cleaning module. The robot includes a mobile module, a cleaning module, and a magnetic module. The cleaning module uses push shovel cleaning technology to scrape away marine biofouling. It adopts a rigid‐flexible coupling mechanism design and can passively adapt to ship walls with different curvatures. A barnacle stress model was established, and the front angle of the push shovel was selected to be 60° through numerical simulation. On this basis, a robot adsorption failure model was established, and the minimum magnetic force required by the robot when the safety factor was 1.5 was obtained to be 1084 N. Based on the structure size of the robot, Ansys was used to conduct a comparative analysis on the adsorption efficiency of four Halbach Array magnetic circuit structures and determined that the magnetic force generated by the five‐magnetic circuit structure is relatively higher. Based on this, the structural dimensions of the magnetic module were designed, and the effects of air gap and wall thickness on magnetic force were analyzed. It was found that when the wall thickness exceeds 6 mm, the impact on magnetic force is small, and the air gap should be set within 10 mm. A robot prototype was built, and its performance was tested. The experimental results show that the robot has good motion performance; it can reach about 5 m underwater and move stably, and has good waterproof performance; when the robot moves circumferentially on the wall, the cleaning module can adapt to surfaces with a curvature of 3 m or more, and has good surface self‐adaptation ability; it is effective in removing marine biofouling.","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"10 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/rob.22430","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

To address the problem of difficulty in removing marine biofouling due to the variable curvature of the ship wall, this study proposed a marine biofouling removal wall‐climbing robot equipped with an adaptive variable curvature wall cleaning module. The robot includes a mobile module, a cleaning module, and a magnetic module. The cleaning module uses push shovel cleaning technology to scrape away marine biofouling. It adopts a rigid‐flexible coupling mechanism design and can passively adapt to ship walls with different curvatures. A barnacle stress model was established, and the front angle of the push shovel was selected to be 60° through numerical simulation. On this basis, a robot adsorption failure model was established, and the minimum magnetic force required by the robot when the safety factor was 1.5 was obtained to be 1084 N. Based on the structure size of the robot, Ansys was used to conduct a comparative analysis on the adsorption efficiency of four Halbach Array magnetic circuit structures and determined that the magnetic force generated by the five‐magnetic circuit structure is relatively higher. Based on this, the structural dimensions of the magnetic module were designed, and the effects of air gap and wall thickness on magnetic force were analyzed. It was found that when the wall thickness exceeds 6 mm, the impact on magnetic force is small, and the air gap should be set within 10 mm. A robot prototype was built, and its performance was tested. The experimental results show that the robot has good motion performance; it can reach about 5 m underwater and move stably, and has good waterproof performance; when the robot moves circumferentially on the wall, the cleaning module can adapt to surfaces with a curvature of 3 m or more, and has good surface self‐adaptation ability; it is effective in removing marine biofouling.
推铲式爬墙机器人的设计与分析
为解决因船壁曲率变化而导致的海洋生物污损清除困难的问题,本研究提出了一种配备自适应变曲率船壁清洁模块的海洋生物污损清除爬壁机器人。该机器人包括移动模块、清洁模块和磁力模块。清洁模块采用推铲清洁技术刮除海洋生物污垢。它采用刚柔耦合机构设计,可被动适应不同曲率的船壁。建立了藤壶应力模型,并通过数值模拟将推铲前角选定为 60°。在此基础上,建立了机器人吸附失效模型,得出安全系数为 1.5 时机器人所需的最小磁力为 1084 N。根据机器人的结构尺寸,利用 Ansys 对四种哈尔巴赫阵列磁路结构的吸附效率进行了对比分析,确定五种磁路结构产生的磁力相对较大。在此基础上,设计了磁模块的结构尺寸,并分析了气隙和壁厚对磁力的影响。结果发现,当壁厚超过 6 毫米时,对磁力的影响较小,气隙应设置在 10 毫米以内。制作了机器人原型,并对其性能进行了测试。实验结果表明,机器人运动性能良好,能在水下 5 米左右稳定移动,防水性能好;机器人在墙壁上圆周运动时,清洁模块能适应曲率在 3 米以上的表面,具有良好的表面自适应能力,能有效清除海洋生物污垢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信