Cobalt Ferrite–Silica–Gold Nanocomposite: Synthesis, Structural Characterization, and Magneto‐Plasmonic Properties

IF 2.7 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Thiago. E. P. Alves, Thatielly F. Almeida, Adolfo Franco, Clemens Burda
{"title":"Cobalt Ferrite–Silica–Gold Nanocomposite: Synthesis, Structural Characterization, and Magneto‐Plasmonic Properties","authors":"Thiago. E. P. Alves, Thatielly F. Almeida, Adolfo Franco, Clemens Burda","doi":"10.1002/ppsc.202400170","DOIUrl":null,"url":null,"abstract":"Cobalt ferrite–silica–gold nanocomposite (CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>@SiO<jats:sub>2</jats:sub>@Au) is synthesized using a new method involving: i) the polyol method for cobalt ferrite nanoparticles (CoFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>), ii) the Stober method for silica coating, iii) surface functionalization with 3‐aminopropyl triethoxysilane (APTES), and iv) decoration with gold nanoparticles via tetrakis hydroxy‐methyl‐phosphonium (THPC) reduction. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) confirm the morphology of the nanoparticles and coatings for the nanocomposites. Ultraviolet–visible (UV–Vis) absorption spectra exhibit plasmon resonance peaks with tuned shifts, discuss in terms of the difference in dielectric permittivity in the core where gold nanoparticles are anchored. Magnetic hysteresis analysis reveals superparamagnetic behavior with reduced saturation magnetization for the nanocomposites. These findings are useful, as superparamagnetic behavior combined with control of plasmonic emission is highly relevant for several magneto‐plasmonic applications.","PeriodicalId":19903,"journal":{"name":"Particle & Particle Systems Characterization","volume":"43 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle & Particle Systems Characterization","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/ppsc.202400170","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cobalt ferrite–silica–gold nanocomposite (CoFe2O4@SiO2@Au) is synthesized using a new method involving: i) the polyol method for cobalt ferrite nanoparticles (CoFe2O4), ii) the Stober method for silica coating, iii) surface functionalization with 3‐aminopropyl triethoxysilane (APTES), and iv) decoration with gold nanoparticles via tetrakis hydroxy‐methyl‐phosphonium (THPC) reduction. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) confirm the morphology of the nanoparticles and coatings for the nanocomposites. Ultraviolet–visible (UV–Vis) absorption spectra exhibit plasmon resonance peaks with tuned shifts, discuss in terms of the difference in dielectric permittivity in the core where gold nanoparticles are anchored. Magnetic hysteresis analysis reveals superparamagnetic behavior with reduced saturation magnetization for the nanocomposites. These findings are useful, as superparamagnetic behavior combined with control of plasmonic emission is highly relevant for several magneto‐plasmonic applications.
钴铁氧体-二氧化硅-金纳米复合材料:合成、结构表征和磁-质子特性
采用一种新方法合成了钴铁氧体-二氧化硅-金纳米复合材料(CoFe2O4@SiO2@Au):i) 用多元醇法制备钴铁氧体纳米颗粒(CoFe2O4);ii) 用斯托伯法制备二氧化硅涂层;iii) 用 3- 氨基丙基三乙氧基硅烷(APTES)进行表面功能化;iv) 通过四羟甲基膦(THPC)还原法装饰金纳米颗粒。透射电子显微镜(TEM)和扫描电子显微镜(SEM)证实了纳米复合材料的纳米颗粒和涂层的形态。紫外-可见(UV-Vis)吸收光谱显示出具有调谐偏移的等离子体共振峰,该共振峰是根据锚定金纳米粒子的内核的介电常数差异讨论的。磁滞分析表明,纳米复合材料具有超顺磁性,饱和磁化率降低。这些发现非常有用,因为超顺磁性行为与等离子发射控制相结合,与多种磁-等离子应用高度相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Particle & Particle Systems Characterization
Particle & Particle Systems Characterization 工程技术-材料科学:表征与测试
CiteScore
5.50
自引率
0.00%
发文量
114
审稿时长
3.0 months
期刊介绍: Particle & Particle Systems Characterization is an international, peer-reviewed, interdisciplinary journal focusing on all aspects of particle research. The journal joined the Advanced Materials family of journals in 2013. Particle has an impact factor of 4.194 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). Topics covered include the synthesis, characterization, and application of particles in a variety of systems and devices. Particle covers nanotubes, fullerenes, micelles and alloy clusters, organic and inorganic materials, polymers, quantum dots, 2D materials, proteins, and other molecular biological systems. Particle Systems include those in biomedicine, catalysis, energy-storage materials, environmental science, micro/nano-electromechanical systems, micro/nano-fluidics, molecular electronics, photonics, sensing, and others. Characterization methods include microscopy, spectroscopy, electrochemical, diffraction, magnetic, and scattering techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信