Cosmic ray north-south anisotropy: rigidity spectrum and solar cycle variations observed by ground-based muon detectors

M. Kozai, Y. Hayashi, K. Fujii, K. Munakata, C. Kato, N. Miyashita, A. Kadokura, R. Kataoka, S. Miyake, M. L. Duldig, J. E. Humble, K. Iwai
{"title":"Cosmic ray north-south anisotropy: rigidity spectrum and solar cycle variations observed by ground-based muon detectors","authors":"M. Kozai, Y. Hayashi, K. Fujii, K. Munakata, C. Kato, N. Miyashita, A. Kadokura, R. Kataoka, S. Miyake, M. L. Duldig, J. E. Humble, K. Iwai","doi":"arxiv-2409.03182","DOIUrl":null,"url":null,"abstract":"The north-south (NS) anisotropy of galactic cosmic rays (GCRs) is dominated\nby a diamagnetic drift flow of GCRs in the interplanetary magnetic field (IMF),\nallowing us to derive key parameters of cosmic-ray propagation, such as the\ndensity gradient and diffusion coefficient. We propose a new method to analyze\nthe rigidity spectrum of GCR anisotropy and reveal a solar cycle variation of\nthe NS anisotropy's spectrum using ground-based muon detectors in Nagoya,\nJapan, and Hobart, Australia. The physics-based correction method for the\natmospheric temperature effect on muons is used to combine the different-site\ndetectors free from local atmospheric effects. NS channel pairs in the\nmulti-directional muon detectors are formed to enhance sensitivity to the NS\nanisotropy, and in this process, general graph matching in graph theory is\nintroduced to survey optimized pairs. Moreover, Bayesian estimation with the\nGaussian process allows us to unfold the rigidity spectrum without supposing\nany analytical function for the spectral shape. Thanks to these novel\napproaches, it has been discovered that the rigidity spectrum of the NS\nanisotropy is dynamically varying with solar activity every year. It is\nattributed to a rigidity-dependent variation of the radial density gradient of\nGCRs based on the nature of the diamagnetic drift in the IMF. The diffusion\ncoefficient and mean-free-path length of GCRs as functions of the rigidity are\nalso derived from the diffusion-convection flow balance. This analysis expands\nthe estimation limit of the mean-free-path length into $\\le200$ GV rigidity\nregion from $<10$ GV region achieved by solar energetic particle observations.","PeriodicalId":501423,"journal":{"name":"arXiv - PHYS - Space Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Space Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The north-south (NS) anisotropy of galactic cosmic rays (GCRs) is dominated by a diamagnetic drift flow of GCRs in the interplanetary magnetic field (IMF), allowing us to derive key parameters of cosmic-ray propagation, such as the density gradient and diffusion coefficient. We propose a new method to analyze the rigidity spectrum of GCR anisotropy and reveal a solar cycle variation of the NS anisotropy's spectrum using ground-based muon detectors in Nagoya, Japan, and Hobart, Australia. The physics-based correction method for the atmospheric temperature effect on muons is used to combine the different-site detectors free from local atmospheric effects. NS channel pairs in the multi-directional muon detectors are formed to enhance sensitivity to the NS anisotropy, and in this process, general graph matching in graph theory is introduced to survey optimized pairs. Moreover, Bayesian estimation with the Gaussian process allows us to unfold the rigidity spectrum without supposing any analytical function for the spectral shape. Thanks to these novel approaches, it has been discovered that the rigidity spectrum of the NS anisotropy is dynamically varying with solar activity every year. It is attributed to a rigidity-dependent variation of the radial density gradient of GCRs based on the nature of the diamagnetic drift in the IMF. The diffusion coefficient and mean-free-path length of GCRs as functions of the rigidity are also derived from the diffusion-convection flow balance. This analysis expands the estimation limit of the mean-free-path length into $\le200$ GV rigidity region from $<10$ GV region achieved by solar energetic particle observations.
宇宙射线南北各向异性:地面μ介子探测器观测到的刚度谱和太阳周期变化
银河宇宙射线(GCRs)的南北(NS)各向异性是由行星际磁场(IMF)中GCRs的二磁漂移流主导的,这使我们能够推导出宇宙射线传播的关键参数,如密度梯度和扩散系数。我们提出了一种分析GCR各向异性刚性谱的新方法,并利用日本名古屋和澳大利亚霍巴特的地基μ介子探测器揭示了NS各向异性谱的太阳周期变化。利用基于物理学的μ介子温度效应校正方法,将不同地点的探测器结合起来,使其不受局部大气的影响。在多方向μ介子探测器中形成NS通道对,以提高对NS各向异性的灵敏度。此外,利用高斯过程的贝叶斯估计,我们可以展开刚度谱,而无需假设谱形的任何分析函数。由于采用了这些新方法,我们发现 NS 各向异性的刚度谱每年都随太阳活动而动态变化。这归因于基于 IMF 中二磁漂移性质的 GCR 径向密度梯度的刚性变化。此外,还从扩散-对流平衡中推导出 GCR 的扩散系数和平均自由路径长度与刚度的函数关系。这一分析将平均自由路径长度的估计极限从太阳高能粒子观测所获得的小于10 GV的区域扩展到了小于200 GV的刚性区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信