Magnetospheric control of ionospheric TEC perturbations via whistler-mode and ULF waves

Yangyang Shen, Olga P. Verkhoglyadova, Anton Artemyev, Michael D. Hartinger, Vassilis Angelopoulos, Xueling Shi, Ying Zou
{"title":"Magnetospheric control of ionospheric TEC perturbations via whistler-mode and ULF waves","authors":"Yangyang Shen, Olga P. Verkhoglyadova, Anton Artemyev, Michael D. Hartinger, Vassilis Angelopoulos, Xueling Shi, Ying Zou","doi":"arxiv-2409.05168","DOIUrl":null,"url":null,"abstract":"The weakly ionized plasma in the Earth's ionosphere is controlled by a\ncomplex interplay between solar and magnetospheric inputs from above,\natmospheric processes from below, and plasma electrodynamics from within. This\ninteraction results in ionosphere structuring and variability that pose major\nchallenges for accurate ionosphere prediction for global navigation satellite\nsystem (GNSS) related applications and space weather research. The ionospheric\nstructuring and variability are often probed using the total electron content\n(TEC) and its relative perturbations (dTEC). Among dTEC variations observed at\nhigh latitudes, a unique modulation pattern has been linked to magnetospheric\nultra low frequency (ULF) waves, yet its underlying mechanisms remain unclear.\nHere using magnetically-conjugate observations from the THEMIS spacecraft and a\nground-based GPS receiver at Fairbanks, Alaska, we provide direct evidence that\nthese dTEC modulations are driven by magnetospheric electron precipitation\ninduced by ULF-modulated whistler-mode waves. We observed peak-to-peak dTEC\namplitudes reaching ~0.5 TECU (1 TECU is equal to 10$^6$ electrons/m$^2$) with\nmodulations spanning scales of ~5--100 km. The cross-correlation between our\nmodeled and observed dTEC reached ~0.8 during the conjugacy period but\ndecreased outside of it. The spectra of whistler-mode waves and dTEC also\nmatched closely at ULF frequencies during the conjugacy period but diverged\noutside of it. Our findings elucidate the high-latitude dTEC generation from\nmagnetospheric wave-induced precipitation, addressing a significant gap in\ncurrent physics-based dTEC modeling. Theses results thus improve ionospheric\ndTEC prediction and enhance our understanding of magnetosphere-ionosphere\ncoupling via ULF waves.","PeriodicalId":501423,"journal":{"name":"arXiv - PHYS - Space Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Space Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The weakly ionized plasma in the Earth's ionosphere is controlled by a complex interplay between solar and magnetospheric inputs from above, atmospheric processes from below, and plasma electrodynamics from within. This interaction results in ionosphere structuring and variability that pose major challenges for accurate ionosphere prediction for global navigation satellite system (GNSS) related applications and space weather research. The ionospheric structuring and variability are often probed using the total electron content (TEC) and its relative perturbations (dTEC). Among dTEC variations observed at high latitudes, a unique modulation pattern has been linked to magnetospheric ultra low frequency (ULF) waves, yet its underlying mechanisms remain unclear. Here using magnetically-conjugate observations from the THEMIS spacecraft and a ground-based GPS receiver at Fairbanks, Alaska, we provide direct evidence that these dTEC modulations are driven by magnetospheric electron precipitation induced by ULF-modulated whistler-mode waves. We observed peak-to-peak dTEC amplitudes reaching ~0.5 TECU (1 TECU is equal to 10$^6$ electrons/m$^2$) with modulations spanning scales of ~5--100 km. The cross-correlation between our modeled and observed dTEC reached ~0.8 during the conjugacy period but decreased outside of it. The spectra of whistler-mode waves and dTEC also matched closely at ULF frequencies during the conjugacy period but diverged outside of it. Our findings elucidate the high-latitude dTEC generation from magnetospheric wave-induced precipitation, addressing a significant gap in current physics-based dTEC modeling. Theses results thus improve ionospheric dTEC prediction and enhance our understanding of magnetosphere-ionosphere coupling via ULF waves.
磁层通过惠斯勒模式和超低频波控制电离层 TEC 扰动
地球电离层中的弱电离等离子体受到来自上方的太阳和磁层输入、来自下方的大气过程以及来自内部的等离子体电动力学之间复杂的相互作用的控制。这种相互作用导致电离层的结构和变化,给全球导航卫星系统(GNSS)相关应用和空间天气研究的电离层精确预测带来了重大挑战。电离层结构和可变性通常利用电子总含量(TEC)及其相对扰动(dTEC)来探测。在高纬度地区观测到的dTEC变化中,有一种独特的调制模式与磁层低频(ULF)波有关,但其基本机制仍不清楚。在这里,我们利用THEMIS航天器和阿拉斯加费尔班克斯的地面GPS接收器进行的磁共轭观测,提供了直接证据,证明这些dTEC调制是由ULF调制的啸叫模式波引起的磁层电子沉淀驱动的。我们观测到的峰-峰 dTEC 振幅达到约 0.5 TECU(1 TECU 等于 10$^6$ 电子/m$^2$),调制范围约为 5-100 公里。在共轭期,我们模拟的 dTEC 与观测到的 dTEC 之间的交叉相关性达到了 ~0.8,但在共轭期之外则有所下降。在共轭期,惠斯勒模式波和 dTEC 的频谱在超短波频率上也很接近,但在共轭期之外则出现了分化。我们的研究结果阐明了由磁层波引起的降水所产生的高纬度 dTEC,解决了目前基于物理学的 dTEC 建模中的一个重要空白。因此,这些结果改进了电离层dTEC的预测,并加深了我们对通过超低频波进行的磁层-电离层耦合的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信