Asymptotic profiles of positive steady states in a reaction–diffusion benthic–drift model

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Anqi Qu, Jinfeng Wang
{"title":"Asymptotic profiles of positive steady states in a reaction–diffusion benthic–drift model","authors":"Anqi Qu,&nbsp;Jinfeng Wang","doi":"10.1111/sapm.12752","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate a reaction–diffusion–advection benthic–drift model, where the population is divided into two interacting groups: individuals dispersing in the drift zone and individuals living in the benthic zone. For different growth types of the benthic population, we present asymptotic profiles of positive steady states in three cases: (i) large advection; (ii) small diffusion of the drift population; and (iii) large diffusion of the drift population. We prove that in case (i) both the benthic and drift individuals concentrate only at the downstream end; in case (ii), both benthic and drift population reside inhomogeneously in <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>L</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(0, L)$</annotation>\n </semantics></math>, stay away from the upstream end <span></span><math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$x = 0$</annotation>\n </semantics></math>, and concentrate only at the downstream <span></span><math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>=</mo>\n <mi>L</mi>\n </mrow>\n <annotation>$x = L$</annotation>\n </semantics></math>; and in case (iii), the drift species distributes evenly on the entire habitat and the benthic species distributes inhomogeneously throughout the habitat. The result supplements the dynamical behaviors of benthic–drift models developed in earlier works and is also of its own interest.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12752","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate a reaction–diffusion–advection benthic–drift model, where the population is divided into two interacting groups: individuals dispersing in the drift zone and individuals living in the benthic zone. For different growth types of the benthic population, we present asymptotic profiles of positive steady states in three cases: (i) large advection; (ii) small diffusion of the drift population; and (iii) large diffusion of the drift population. We prove that in case (i) both the benthic and drift individuals concentrate only at the downstream end; in case (ii), both benthic and drift population reside inhomogeneously in ( 0 , L ) $(0, L)$ , stay away from the upstream end x = 0 $x = 0$ , and concentrate only at the downstream x = L $x = L$ ; and in case (iii), the drift species distributes evenly on the entire habitat and the benthic species distributes inhomogeneously throughout the habitat. The result supplements the dynamical behaviors of benthic–drift models developed in earlier works and is also of its own interest.

反应-扩散底栖漂移模型中正稳态的渐近曲线
在本文中,我们研究了一个反应-扩散-平流底栖-漂移模型,其中种群分为两个相互作用的群体:在漂移区扩散的个体和生活在底栖区的个体。针对底栖种群的不同增长类型,我们提出了三种情况下正稳态的渐近曲线:(i) 大平流;(ii) 漂移种群的小扩散;(iii) 漂移种群的大扩散。我们证明,在第(i)种情况下,底栖生物和漂移个体都只集中在下游一端;在第(ii)种情况下,底栖生物和漂移种群都不均匀地栖息在上游一端,远离上游一端,只集中在下游一端;在第(iii)种情况下,漂移物种均匀地分布在整个栖息地,而底栖物种不均匀地分布在整个栖息地。这一结果是对早期工作中建立的底栖漂流模型动力学行为的补充,同时也有其自身的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信