Approximations of the Helmholtz equation with variable wave number in one dimension

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Dimitrios A. Mitsoudis, Michael Plexousakis, George N. Makrakis, Charalambos Makridakis
{"title":"Approximations of the Helmholtz equation with variable wave number in one dimension","authors":"Dimitrios A. Mitsoudis,&nbsp;Michael Plexousakis,&nbsp;George N. Makrakis,&nbsp;Charalambos Makridakis","doi":"10.1111/sapm.12756","DOIUrl":null,"url":null,"abstract":"<p>This work is devoted to the numerical solution of the Helmholtz equation with variable wave number and including a point source in appropriately truncated infinite domains. Motivated by a two-dimensional model, we formulate a simplified one-dimensional model. We study its well posedness via wave number explicit stability estimates and prove convergence of the finite element approximations. As a proof of concept, we present the outcome of some numerical experiments for various wave number configurations. Our experiments indicate that the introduction of the artificial boundary near the source and the associated boundary condition lead to an efficient model that accurately captures the wave propagation features.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12756","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12756","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work is devoted to the numerical solution of the Helmholtz equation with variable wave number and including a point source in appropriately truncated infinite domains. Motivated by a two-dimensional model, we formulate a simplified one-dimensional model. We study its well posedness via wave number explicit stability estimates and prove convergence of the finite element approximations. As a proof of concept, we present the outcome of some numerical experiments for various wave number configurations. Our experiments indicate that the introduction of the artificial boundary near the source and the associated boundary condition lead to an efficient model that accurately captures the wave propagation features.

一维波数可变的亥姆霍兹方程的近似值
这项研究致力于在适当截断的无限域中,对波数可变且包含点源的亥姆霍兹方程进行数值求解。受二维模型的启发,我们提出了一个简化的一维模型。我们通过波数显式稳定性估计研究了该模型的假设性,并证明了有限元近似的收敛性。作为概念证明,我们介绍了针对不同波数配置的一些数值实验结果。实验结果表明,在波源附近引入人工边界以及相关的边界条件,可以建立一个准确捕捉波传播特征的高效模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信