Experimental and Simulation Analysis of the Mechanical Deterioration Mechanisms in SiCp/A356 Composites Under Thermal Cycling Load

IF 2.3 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Jiajun Zang, Zhiyong Yang, Mengcheng Sun, Zhiqiang Li, Yubo Wang, Shanshan Ye
{"title":"Experimental and Simulation Analysis of the Mechanical Deterioration Mechanisms in SiCp/A356 Composites Under Thermal Cycling Load","authors":"Jiajun Zang, Zhiyong Yang, Mengcheng Sun, Zhiqiang Li, Yubo Wang, Shanshan Ye","doi":"10.1007/s10443-024-10262-9","DOIUrl":null,"url":null,"abstract":"<p>SiCp/A356 brake discs experience cyclic thermal loading during service, leading to a certain degree of mechanical deterioration in the brake disc material (SiCp/A356 composites), thereby reducing the thermal fatigue resistance of the brake disc, ultimately threatening the braking safety of urban rail trains. To investigate the mechanical deterioration patterns and mechanisms of the SiCp/A356 composites, thermal cycling experiments were conducted, along with simulation methods and microstructural analysis. The results indicate that the upper temperature limit of thermal cycling determines the microstructural damage modes and degree in SiCp/A356 composites, and the damage degree is positively correlated with mechanical deterioration. A temperature of 200 °C is identified as suitable for long-term service of SiCp/A356 composites. Thermal cycling induces thermal mismatch stress and residual stress within the material, serving as the primary driving forces for microstructural damage. Thermal cycling reduces the dislocation density in the near-interface (Al-SiC interface) matrix, improving the material's ductility. However, dislocation accumulation in the matrix far from the interface results in stress concentration, promoting matrix damage and crack formation, thereby compromising mechanical properties. The sole strengthening phase, Mg<sub>2</sub>Si, is susceptible to aggregation and coarsening, leading to reduced mechanical properties after peak aging. The principal cause of interface crack is the stress concentration caused by dislocation accumulation, ultimately leading to interface failure. This research provides important guidance for the operation and maintenance of SiCp/A356 brake disc.</p>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"9 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10443-024-10262-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

SiCp/A356 brake discs experience cyclic thermal loading during service, leading to a certain degree of mechanical deterioration in the brake disc material (SiCp/A356 composites), thereby reducing the thermal fatigue resistance of the brake disc, ultimately threatening the braking safety of urban rail trains. To investigate the mechanical deterioration patterns and mechanisms of the SiCp/A356 composites, thermal cycling experiments were conducted, along with simulation methods and microstructural analysis. The results indicate that the upper temperature limit of thermal cycling determines the microstructural damage modes and degree in SiCp/A356 composites, and the damage degree is positively correlated with mechanical deterioration. A temperature of 200 °C is identified as suitable for long-term service of SiCp/A356 composites. Thermal cycling induces thermal mismatch stress and residual stress within the material, serving as the primary driving forces for microstructural damage. Thermal cycling reduces the dislocation density in the near-interface (Al-SiC interface) matrix, improving the material's ductility. However, dislocation accumulation in the matrix far from the interface results in stress concentration, promoting matrix damage and crack formation, thereby compromising mechanical properties. The sole strengthening phase, Mg2Si, is susceptible to aggregation and coarsening, leading to reduced mechanical properties after peak aging. The principal cause of interface crack is the stress concentration caused by dislocation accumulation, ultimately leading to interface failure. This research provides important guidance for the operation and maintenance of SiCp/A356 brake disc.

Abstract Image

热循环载荷下 SiCp/A356 复合材料机械劣化机理的实验与仿真分析
SiCp/A356 制动盘在使用过程中会承受循环热负荷,导致制动盘材料(SiCp/A356 复合材料)发生一定程度的机械劣化,从而降低制动盘的抗热疲劳性能,最终威胁城市轨道交通列车的制动安全。为了研究 SiCp/A356 复合材料的机械劣化模式和机理,我们进行了热循环实验,并采用模拟方法和微观结构分析。结果表明,热循环的温度上限决定了 SiCp/A356 复合材料的微观结构损伤模式和程度,损伤程度与机械劣化呈正相关。200 °C 的温度适合 SiCp/A356 复合材料的长期使用。热循环会在材料内部产生热错配应力和残余应力,这是微观结构损坏的主要驱动力。热循环降低了近界面(Al-SiC 界面)基体中的位错密度,从而提高了材料的延展性。然而,远离界面的基体中的位错积累会导致应力集中,促进基体损伤和裂纹形成,从而影响机械性能。唯一的强化相 Mg2Si 容易发生聚集和粗化,导致峰值老化后机械性能降低。界面裂纹的主要原因是位错累积造成的应力集中,最终导致界面失效。这项研究为 SiCp/A356 制动盘的操作和维护提供了重要指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Composite Materials
Applied Composite Materials 工程技术-材料科学:复合
CiteScore
4.20
自引率
4.30%
发文量
81
审稿时长
1.6 months
期刊介绍: Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes. Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信