Benchmark of Techniques for the Characterization of the Mechanism of Phase Transformations in Steel of Near-Peritectic Composition

Tomasz Kargul, Suk-Chun Moon, Rian Dippenaar
{"title":"Benchmark of Techniques for the Characterization of the Mechanism of Phase Transformations in Steel of Near-Peritectic Composition","authors":"Tomasz Kargul, Suk-Chun Moon, Rian Dippenaar","doi":"10.1007/s11661-024-07551-0","DOIUrl":null,"url":null,"abstract":"<p>This study addresses challenges in elucidating the mechanism of phase transformations occurring in steel of near-peritectic composition. The importance of using and integrating, complementary experimental techniques is emphasized. While thermal analysis tools such as Differential Scanning Calorimetry (DSC) and Differential Thermal Analysis (DTA) are vital, they offer limited insight on events occurring during cooling. Employing standard thermal analysis (DSC) alongside high-temperature microscopy, incorporating simultaneous thermal analysis within a high-temperature microscope, and concentric solidification, two of steels of near-peritectic composition were investigated. Key findings include the correlation between heating rates and completion temperatures of phase transformation in the DSC heating experiments; absence of a peritectic transition inferred from DSC cooling curves supported by visual observation, and insights into restricted austenite phase nucleation attributed to diffusional constraint and limited nucleation sites. This investigation not only contributes to understanding phase transformation behaviour in peritectic steels, but more generally provides a framework for utilizing different techniques synergistically to address complexities in the interpretation of the mechanism of phase development.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-024-07551-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses challenges in elucidating the mechanism of phase transformations occurring in steel of near-peritectic composition. The importance of using and integrating, complementary experimental techniques is emphasized. While thermal analysis tools such as Differential Scanning Calorimetry (DSC) and Differential Thermal Analysis (DTA) are vital, they offer limited insight on events occurring during cooling. Employing standard thermal analysis (DSC) alongside high-temperature microscopy, incorporating simultaneous thermal analysis within a high-temperature microscope, and concentric solidification, two of steels of near-peritectic composition were investigated. Key findings include the correlation between heating rates and completion temperatures of phase transformation in the DSC heating experiments; absence of a peritectic transition inferred from DSC cooling curves supported by visual observation, and insights into restricted austenite phase nucleation attributed to diffusional constraint and limited nucleation sites. This investigation not only contributes to understanding phase transformation behaviour in peritectic steels, but more generally provides a framework for utilizing different techniques synergistically to address complexities in the interpretation of the mechanism of phase development.

Abstract Image

近似建筑成分钢中相变机理表征技术基准
本研究探讨了阐明近似建筑成分钢中发生相变的机理所面临的挑战。研究强调了使用和整合互补实验技术的重要性。虽然差示扫描量热法(DSC)和差示热分析法(DTA)等热分析工具非常重要,但它们对冷却过程中发生的事件提供的洞察力有限。采用标准热分析(DSC)和高温显微镜,在高温显微镜中同时进行热分析和同心凝固,对两种接近建筑成分的钢进行了研究。主要发现包括:在 DSC 加热实验中,加热速率与相变完成温度之间存在相关性;根据目视观察支持的 DSC 冷却曲线推断,不存在包晶转变;深入了解了由于扩散限制和成核部位有限而导致的奥氏体相成核受限。这项研究不仅有助于理解包晶钢中的相变行为,而且更广泛地提供了一个框架,可协同利用不同的技术来解决解释相发展机制的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信