{"title":"Wear and Corrosion Resistances of Arc-Sprayed FeCr Alloy and Fe-Based Coatings for Boiler Heat Exchanger Pipelines","authors":"Wangping Wu, Sheng Lin","doi":"10.1007/s11666-024-01828-x","DOIUrl":null,"url":null,"abstract":"<div><p>Wear and corrosion of boiler tubes in coal-based boilers are one of the serious problems. Trying to solve this issue, FeCr alloy with 45%Cr-content coating and Fe-based coating with 13%Cr-content were arc sprayed onto carbon steel substrates to enhance both the wear and corrosion resistance of boiler heat exchanger pipelines. The microstructure, chemical compositions, and phases of the coatings were analyzed using a scanning electron microscopy, energy-dispersive spectrometer, and x-ray diffraction, respectively. The wear resistance of the coatings was assessed at 25 and 300 °C using a ball-on-disk wear tester. The corrosion resistance of the coatings was evaluated based on seawater immersion, electrochemical impedance, and polarization tests. The porosities of FeCr alloy and Fe-based coatings were 4.05 and 5.75%, respectively. The microhardness values of FeCr alloy and Fe-based coatings were 377.50 ± 46.88 HV<sub>0.5</sub> and 666.69 ± 57.64 HV<sub>0.5</sub>, respectively. FeCr alloy coating with lamellar structure was mainly composed of FeCr solid solution phase and a small amount of Cr oxide and Fe<sub>3</sub>O<sub>4</sub> phases, and Fe-based coating was composed of a mixture phase of amorphous and crystalline, and a small amount of Fe<sub>3</sub>O<sub>4</sub> phase. FeCr alloy coating had better wear resistance than Fe-based coating at both 25 and 300 °C. The wear mechanisms of the coatings were also studied. The corrosion resistance of FeCr alloy coating was better than that of Fe-based coating in corrosive solutions. Therefore, FeCr alloy coating can provide better high-temperature wear resistance and anticorrosion performance for boiler heat exchanger piping, compared with Fe-based coating.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 6","pages":"2068 - 2088"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01828-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Wear and corrosion of boiler tubes in coal-based boilers are one of the serious problems. Trying to solve this issue, FeCr alloy with 45%Cr-content coating and Fe-based coating with 13%Cr-content were arc sprayed onto carbon steel substrates to enhance both the wear and corrosion resistance of boiler heat exchanger pipelines. The microstructure, chemical compositions, and phases of the coatings were analyzed using a scanning electron microscopy, energy-dispersive spectrometer, and x-ray diffraction, respectively. The wear resistance of the coatings was assessed at 25 and 300 °C using a ball-on-disk wear tester. The corrosion resistance of the coatings was evaluated based on seawater immersion, electrochemical impedance, and polarization tests. The porosities of FeCr alloy and Fe-based coatings were 4.05 and 5.75%, respectively. The microhardness values of FeCr alloy and Fe-based coatings were 377.50 ± 46.88 HV0.5 and 666.69 ± 57.64 HV0.5, respectively. FeCr alloy coating with lamellar structure was mainly composed of FeCr solid solution phase and a small amount of Cr oxide and Fe3O4 phases, and Fe-based coating was composed of a mixture phase of amorphous and crystalline, and a small amount of Fe3O4 phase. FeCr alloy coating had better wear resistance than Fe-based coating at both 25 and 300 °C. The wear mechanisms of the coatings were also studied. The corrosion resistance of FeCr alloy coating was better than that of Fe-based coating in corrosive solutions. Therefore, FeCr alloy coating can provide better high-temperature wear resistance and anticorrosion performance for boiler heat exchanger piping, compared with Fe-based coating.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.