{"title":"On a parabolic Monge–Ampère type equation on compact almost Hermitian manifolds","authors":"Masaya Kawamura","doi":"10.1002/mana.202300155","DOIUrl":null,"url":null,"abstract":"<p>We investigate a parabolic Monge–Ampère type equation on compact almost Hermitian manifolds and derive a priori gradient and second-order derivative estimates for solutions to this parabolic equation. These a priori estimates give us higher order estimates and a long-time solution. Then, we can observe its behavior as <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$t\\rightarrow \\infty$</annotation>\n </semantics></math>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate a parabolic Monge–Ampère type equation on compact almost Hermitian manifolds and derive a priori gradient and second-order derivative estimates for solutions to this parabolic equation. These a priori estimates give us higher order estimates and a long-time solution. Then, we can observe its behavior as .