Measure theoretic aspects of the finite Hilbert transform

Pub Date : 2024-08-26 DOI:10.1002/mana.202200537
Guillermo P. Curbera, Susumu Okada, Werner J. Ricker
{"title":"Measure theoretic aspects of the finite Hilbert transform","authors":"Guillermo P. Curbera,&nbsp;Susumu Okada,&nbsp;Werner J. Ricker","doi":"10.1002/mana.202200537","DOIUrl":null,"url":null,"abstract":"<p>The finite Hilbert transform <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math>, when acting in the classical Zygmund space <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mi>l</mi>\n <mi>o</mi>\n <mi>g</mi>\n <mi>L</mi>\n </mrow>\n <annotation>$L\\textnormal {log} L$</annotation>\n </semantics></math> (over <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(-1,1)$</annotation>\n </semantics></math>), was intensively studied in [8]. In this note, an integral representation of <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> is established via the <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>1</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^1(-1,1)$</annotation>\n </semantics></math>-valued measure <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>m</mi>\n <msup>\n <mi>L</mi>\n <mn>1</mn>\n </msup>\n </msub>\n <mo>:</mo>\n <mi>A</mi>\n <mo>↦</mo>\n <mi>T</mi>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>χ</mi>\n <mi>A</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$m_{L^1}: A\\mapsto T(\\chi _A)$</annotation>\n </semantics></math> for each Borel set <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>⊆</mo>\n <mo>(</mo>\n <mo>−</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$A\\subseteq (-1,1)$</annotation>\n </semantics></math>. This integral representation, together with various non-trivial properties of <span></span><math>\n <semantics>\n <msub>\n <mi>m</mi>\n <msup>\n <mi>L</mi>\n <mn>1</mn>\n </msup>\n </msub>\n <annotation>$m_{L^1}$</annotation>\n </semantics></math>, allows the use of measure theoretic methods (not available in [8]) to establish new properties of <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math>. For instance, as an operator between Banach function spaces <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> is not order bounded, it is not completely continuous and neither is it weakly compact. An appropriate Parseval formula for <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$T$</annotation>\n </semantics></math> plays a crucial role.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202200537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The finite Hilbert transform T $T$ , when acting in the classical Zygmund space L l o g L $L\textnormal {log} L$ (over ( 1 , 1 ) $(-1,1)$ ), was intensively studied in [8]. In this note, an integral representation of T $T$ is established via the L 1 ( 1 , 1 ) $L^1(-1,1)$ -valued measure m L 1 : A T ( χ A ) $m_{L^1}: A\mapsto T(\chi _A)$ for each Borel set A ( 1 , 1 ) $A\subseteq (-1,1)$ . This integral representation, together with various non-trivial properties of m L 1 $m_{L^1}$ , allows the use of measure theoretic methods (not available in [8]) to establish new properties of T $T$ . For instance, as an operator between Banach function spaces T $T$ is not order bounded, it is not completely continuous and neither is it weakly compact. An appropriate Parseval formula for T $T$ plays a crucial role.

分享
查看原文
有限希尔伯特变换的度量论问题
有限希尔伯特变换 ,当作用于经典齐格蒙德空间 (over ) 时,在 [8] 中进行了深入研究。在本注释中,通过每个 Borel 集合的-值度量,建立了 、 的积分表示。这种积分表示法,连同 , 的各种非难性质,允许使用度量论方法([8] 中没有)来建立 . 例如,由于巴拿赫函数空间之间的算子不是有阶的,所以它不是完全连续的,也不是弱紧凑的。适当的 Parseval 公式起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信