The optimal polynomial decay in the extensible Timoshenko system

Pub Date : 2024-09-02 DOI:10.1002/mana.202300331
Moncef Aouadi
{"title":"The optimal polynomial decay in the extensible Timoshenko system","authors":"Moncef Aouadi","doi":"10.1002/mana.202300331","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we derive the equations that constitute the nonlinear mathematical model of an extensible thermoelastic Timoshenko system. The nonlinear governing equations are derived by applying the Hamilton principle to full von Kármán equations. The model takes account of the effects of extensibility, where the dissipations are entirely contributed by temperature. Based on the semigroups theory, we establish existence and uniqueness of weak and strong solutions to the derived problem. By using a resolvent criterion, developed by Borichev and Tomilov, we prove the optimality of the polynomial decay rate of the considered problem under the condition (65). Moreover, by an approach based on the Gearhart–Herbst–Prüss–Huang theorem, we show the non-exponential stability of the same problem; but strongly stable by following a result due to Arendt–Batty. In the absence of additional mechanical dissipations, the system is often not highly stable. By adding a damping frictional function to the first equation of the nonlinear derived model with extensibility and using the multiplier method, we show that the solutions decay exponentially if Equation (85) holds.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we derive the equations that constitute the nonlinear mathematical model of an extensible thermoelastic Timoshenko system. The nonlinear governing equations are derived by applying the Hamilton principle to full von Kármán equations. The model takes account of the effects of extensibility, where the dissipations are entirely contributed by temperature. Based on the semigroups theory, we establish existence and uniqueness of weak and strong solutions to the derived problem. By using a resolvent criterion, developed by Borichev and Tomilov, we prove the optimality of the polynomial decay rate of the considered problem under the condition (65). Moreover, by an approach based on the Gearhart–Herbst–Prüss–Huang theorem, we show the non-exponential stability of the same problem; but strongly stable by following a result due to Arendt–Batty. In the absence of additional mechanical dissipations, the system is often not highly stable. By adding a damping frictional function to the first equation of the nonlinear derived model with extensibility and using the multiplier method, we show that the solutions decay exponentially if Equation (85) holds.

分享
查看原文
可扩展季莫申科系统中的最优多项式衰减
在本文中,我们推导出了构成可伸展热弹性季莫申科系统非线性数学模型的方程。非线性控制方程是通过将汉密尔顿原理应用于完整的 von Kármán 方程得出的。该模型考虑了可伸缩性的影响,其中的耗散完全由温度贡献。基于半群理论,我们建立了推导问题的弱解和强解的存在性和唯一性。通过使用 Borichev 和 Tomilov 提出的分解准则,我们证明了在条件 (65) 下所考虑问题的多项式衰减率的最优性。此外,通过基于 Gearhart-Herbst-Prüss-Huang 定理的方法,我们证明了同一问题的非指数稳定性;但根据阿伦特-巴蒂(Arendt-Batty)的结果,该问题具有强稳定性。在没有额外机械耗散的情况下,系统往往不是高度稳定的。通过在具有扩展性的非线性导出模型的第一个方程中添加阻尼摩擦函数,并使用乘法器方法,我们证明了如果方程 (85) 成立,解将呈指数衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信