On a family of sparse exponential sums

IF 0.8 3区 数学 Q2 MATHEMATICS
Moubariz Z. Garaev, Zeev Rudnick, Igor E. Shparlinski
{"title":"On a family of sparse exponential sums","authors":"Moubariz Z. Garaev,&nbsp;Zeev Rudnick,&nbsp;Igor E. Shparlinski","doi":"10.1002/mana.202300426","DOIUrl":null,"url":null,"abstract":"<p>We investigate exponential sums modulo primes whose phase function is a sparse polynomial, with exponents growing with the prime. In particular, such sums model those which appear in the study of the quantum cat map. While they are not amenable to treatment by algebro-geometric methods such as Weil's bounds, Bourgain gave a nontrivial estimate for these and more general sums. In this work, we obtain explicit bounds with reasonable savings over various types of averaging. We also initiate the study of the value distribution of these sums.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300426","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300426","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate exponential sums modulo primes whose phase function is a sparse polynomial, with exponents growing with the prime. In particular, such sums model those which appear in the study of the quantum cat map. While they are not amenable to treatment by algebro-geometric methods such as Weil's bounds, Bourgain gave a nontrivial estimate for these and more general sums. In this work, we obtain explicit bounds with reasonable savings over various types of averaging. We also initiate the study of the value distribution of these sums.

关于稀疏指数和族
我们研究了相位函数为稀疏多项式、指数随素数增长的素数模指数和。特别是,这种和是量子猫图研究中出现的和的模型。虽然它们不适合用魏尔边界等代数几何方法来处理,但布尔甘给出了这些和以及更一般和的非难估计值。在这项工作中,我们获得了明确的界限,合理地节省了各种类型的平均值。我们还开始研究这些和的值分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信