{"title":"Inverse initial-value problems for time fractional diffusion equations in fractional Sobolev spaces","authors":"Nguyen Huy Tuan, Bao-Ngoc Tran","doi":"10.1002/mana.202300292","DOIUrl":null,"url":null,"abstract":"<p>We study the time fractional diffusion equation <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>∂</mi>\n <mi>t</mi>\n </msub>\n <mi>u</mi>\n <mo>=</mo>\n <msubsup>\n <mi>∂</mi>\n <mi>t</mi>\n <mrow>\n <mn>1</mn>\n <mo>−</mo>\n <mi>α</mi>\n </mrow>\n </msubsup>\n <mi>A</mi>\n <mi>u</mi>\n <mo>+</mo>\n <mi>G</mi>\n <mrow>\n <mo>(</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\partial _t u = \\partial _t^{1-\\alpha } \\mathcal {A} u + G(u)$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo><</mo>\n <mi>α</mi>\n <mo><</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$0&lt;\\alpha &lt;1$</annotation>\n </semantics></math>, in a bounded domain <span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mi>N</mi>\n </msup>\n </mrow>\n <annotation>$\\Omega \\subset \\mathbb {R}^N$</annotation>\n </semantics></math> with an elliptic operator <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> and a locally Lipschitz nonlinearity <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> on fractional Sobolev spaces, subjected to the homogeneous Dirichlet boundary condition. Data have not been measured at the initial time <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$t=0$</annotation>\n </semantics></math>, but at a final time <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$T&gt;0$</annotation>\n </semantics></math>, that is, <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n <mo>(</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$u(T)$</annotation>\n </semantics></math> is given instead of <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$u(0)$</annotation>\n </semantics></math>. The problem is, therefore, called an inverse initial-value problem. We first establish the well-posedness of this problem on fractional Sobolev spaces and the regularity of the solution by assuming only the local Lipschitz continuity of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. Second, an susceptible-infected (shortly, SI) model with heterogeneity and a Navier–Stokes equation have been exemplified. Finally, a spatial <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$L^\\infty$</annotation>\n </semantics></math>-estimate for the solution and its gradient has been provided. The essential tools are asymptotic behaviours of Mittag–Leffler functions, fractional power spaces, fractional Sobolev spaces and embedding, weighted functional spaces, and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>r</mi>\n </msup>\n <mo>−</mo>\n <msup>\n <mi>L</mi>\n <mi>s</mi>\n </msup>\n </mrow>\n <annotation>$L^r-L^s$</annotation>\n </semantics></math> estimates for heat semigroup.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300292","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the time fractional diffusion equation , , in a bounded domain with an elliptic operator and a locally Lipschitz nonlinearity on fractional Sobolev spaces, subjected to the homogeneous Dirichlet boundary condition. Data have not been measured at the initial time , but at a final time , that is, is given instead of . The problem is, therefore, called an inverse initial-value problem. We first establish the well-posedness of this problem on fractional Sobolev spaces and the regularity of the solution by assuming only the local Lipschitz continuity of . Second, an susceptible-infected (shortly, SI) model with heterogeneity and a Navier–Stokes equation have been exemplified. Finally, a spatial -estimate for the solution and its gradient has been provided. The essential tools are asymptotic behaviours of Mittag–Leffler functions, fractional power spaces, fractional Sobolev spaces and embedding, weighted functional spaces, and estimates for heat semigroup.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index