Lijun Cao, Yixin Xiao, Mingming Wang, Boyu Jiang, Xin Zhang, Wei Huang, Zhengyang Jin
{"title":"Preparation and Thermal Emission Characteristics of [Ca24Al28O64]4+:4e− Electronic Compounds","authors":"Lijun Cao, Yixin Xiao, Mingming Wang, Boyu Jiang, Xin Zhang, Wei Huang, Zhengyang Jin","doi":"10.1007/s11664-024-11353-w","DOIUrl":null,"url":null,"abstract":"<p>The [Ca<sub>24</sub>Al<sub>28</sub>O<sub>64</sub>]<sup>4+</sup>:4e<sup>−</sup> electronic compounds (C12A7:e<sup>−</sup>) with low work function and stable chemical properties have been employed in electron emission and optical devices. In this paper, C12A7:e<sup>−</sup> was successfully prepared using CaO, Al<sub>2</sub>O<sub>3</sub>, and Al powders through spark plasma sintering (SPS) at 1250°C for 20 min. The grain size of the sample does not exceed 10 µm. The sample exhibits typical Raman peaks at 175 cm<sup>−1</sup>, 329 cm<sup>−1</sup>, 510 cm<sup>−1</sup>, 780 cm<sup>−1</sup>, and a clear ultraviolet absorption peak at 2.6 eV. The carrier concentration of the sample reaches 1.67 × 10<sup>21</sup> cm<sup>−3</sup>. The emission current density of the sample at 4000 V and 1100°C is 1.34 A/cm<sup>2</sup>, with a fluctuation of no more than 5%. The zero-field emission current density is 1.18 A/cm<sup>2</sup> at 1100°C. The lattice thermal conductivity of C12A7:e<sup>−</sup> decreases with increasing temperature, reaching 12.59 W/(K m) at 1100°C. In addition, the band structure of C12A7:e<sup>−</sup> includes valence band (VB), cage conduction band (CCB), and frame conduction band (FCB), and CCB extends to the Fermi level and has a bandgap of 0.82 eV with FCB. This makes C12A7:e<sup>−</sup> exhibit a typical band conduction mechanism. The electron emission characteristics of C12A7:e<sup>−</sup> are derived from the contributions of the <i>s</i>-orbital electrons of Ca atoms and the <i>p</i>-orbital and <i>d</i>-orbital electrons of Al atoms. This article simplifies the preparation steps of C12A7:e<sup>−</sup> cathode materials, shortens the synthesis cycle, and provides a foundation for the research of C12A7:e<sup>−</sup> cathode.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"77 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11353-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The [Ca24Al28O64]4+:4e− electronic compounds (C12A7:e−) with low work function and stable chemical properties have been employed in electron emission and optical devices. In this paper, C12A7:e− was successfully prepared using CaO, Al2O3, and Al powders through spark plasma sintering (SPS) at 1250°C for 20 min. The grain size of the sample does not exceed 10 µm. The sample exhibits typical Raman peaks at 175 cm−1, 329 cm−1, 510 cm−1, 780 cm−1, and a clear ultraviolet absorption peak at 2.6 eV. The carrier concentration of the sample reaches 1.67 × 1021 cm−3. The emission current density of the sample at 4000 V and 1100°C is 1.34 A/cm2, with a fluctuation of no more than 5%. The zero-field emission current density is 1.18 A/cm2 at 1100°C. The lattice thermal conductivity of C12A7:e− decreases with increasing temperature, reaching 12.59 W/(K m) at 1100°C. In addition, the band structure of C12A7:e− includes valence band (VB), cage conduction band (CCB), and frame conduction band (FCB), and CCB extends to the Fermi level and has a bandgap of 0.82 eV with FCB. This makes C12A7:e− exhibit a typical band conduction mechanism. The electron emission characteristics of C12A7:e− are derived from the contributions of the s-orbital electrons of Ca atoms and the p-orbital and d-orbital electrons of Al atoms. This article simplifies the preparation steps of C12A7:e− cathode materials, shortens the synthesis cycle, and provides a foundation for the research of C12A7:e− cathode.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.