{"title":"Enhancement of Dye Degradation in Piezo-Photocatalytic ZnO–MoS2 Heterostructures","authors":"James Albert B. Narvaez, Candy C. Mercado","doi":"10.1007/s11664-024-11413-1","DOIUrl":null,"url":null,"abstract":"<p>Photocatalysis is a novel approach to degrade hazardous compounds, frequently employed in environmental remediation such as eliminating methyl orange (MO) dye from wastewater. However, low efficient usage of visible light due to the large band gap of photocatalysts and its high rate of recombination limit the process. To address this issue, piezophototronics has been utilized to improve the efficacy of catalytic degradation. Specifically for this study, the piezo-photocatalytic efficiency of ZnO–MoS<sub>2</sub> heterostructures has been realized using solar and mechanical energy in degrading MO dye. One-dimensional heterostructures with an average length of 3.34 <i>μ</i>m and an average diameter of 872.6 nm compactly aligned on glass substrates were synthesized through a two-step hydrothermal process. Under simulated solar illumination and ultrasonic vibration, the ZnO–MoS<sub>2</sub> effectively degraded MO, improving the degradation efficiency from 55% to 84% by introducing piezopotential in ZnO. Ultrasonication aided the photocatalysis through field-assisted separation of the photogenerated electrons and holes, reducing recombination. Coupled liquid chromatography and mass spectrometry confirmed the degradation of MO into its smaller metabolites. The catalyst films have achieved 61% degradation even after 3 times reuse.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"37 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11413-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalysis is a novel approach to degrade hazardous compounds, frequently employed in environmental remediation such as eliminating methyl orange (MO) dye from wastewater. However, low efficient usage of visible light due to the large band gap of photocatalysts and its high rate of recombination limit the process. To address this issue, piezophototronics has been utilized to improve the efficacy of catalytic degradation. Specifically for this study, the piezo-photocatalytic efficiency of ZnO–MoS2 heterostructures has been realized using solar and mechanical energy in degrading MO dye. One-dimensional heterostructures with an average length of 3.34 μm and an average diameter of 872.6 nm compactly aligned on glass substrates were synthesized through a two-step hydrothermal process. Under simulated solar illumination and ultrasonic vibration, the ZnO–MoS2 effectively degraded MO, improving the degradation efficiency from 55% to 84% by introducing piezopotential in ZnO. Ultrasonication aided the photocatalysis through field-assisted separation of the photogenerated electrons and holes, reducing recombination. Coupled liquid chromatography and mass spectrometry confirmed the degradation of MO into its smaller metabolites. The catalyst films have achieved 61% degradation even after 3 times reuse.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.