Yawu Wang, Yue Zhang, Zhichao Xu, Peng Huang, Chun-Yi Su
{"title":"Compound Model of Twisted and Coiled Polymer Actuators Describing Relationship Between Output Force and Excitation Current","authors":"Yawu Wang, Yue Zhang, Zhichao Xu, Peng Huang, Chun-Yi Su","doi":"10.1007/s11664-024-11423-z","DOIUrl":null,"url":null,"abstract":"<p>Recently discovered twisted and coiled polymer actuators (TCPAs) show huge potentials in the field of soft robots due to advantages of low cost, large deformation and force, high energy density, long life, compact size, and easy to drive. To realize practical applications of the TCPA in soft robots, the study on its dynamic modeling is necessary. However, the TCPA has an obvious hysteresis nonlinearity, bringing obstacles to its modeling. Although some hysteresis models for the TCPA have been established, the study on its rate-dependent hysteresis modeling is still insufficient. To address this issue, a compound model has been established, in which the thermomechanical model is developed by cascading the backlash-like model and a dynamic linear system to depict the relationship between the output force and temperature. In addition, a thermoelectric model has been developed based on the first law of thermodynamics, whose function is to depict the relationship between the temperature and excitation current. All fitness values in the model validation of the compound model are larger than 87.949%. Hence, the compound model has a good generalization performance.</p>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11664-024-11423-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Recently discovered twisted and coiled polymer actuators (TCPAs) show huge potentials in the field of soft robots due to advantages of low cost, large deformation and force, high energy density, long life, compact size, and easy to drive. To realize practical applications of the TCPA in soft robots, the study on its dynamic modeling is necessary. However, the TCPA has an obvious hysteresis nonlinearity, bringing obstacles to its modeling. Although some hysteresis models for the TCPA have been established, the study on its rate-dependent hysteresis modeling is still insufficient. To address this issue, a compound model has been established, in which the thermomechanical model is developed by cascading the backlash-like model and a dynamic linear system to depict the relationship between the output force and temperature. In addition, a thermoelectric model has been developed based on the first law of thermodynamics, whose function is to depict the relationship between the temperature and excitation current. All fitness values in the model validation of the compound model are larger than 87.949%. Hence, the compound model has a good generalization performance.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.