{"title":"On Nielsen realization and manifold models for classifying spaces","authors":"James Davis, Wolfgang Lück","doi":"10.1090/tran/9155","DOIUrl":null,"url":null,"abstract":"<p>We consider the problem of whether, for a given virtually torsionfree discrete group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there exists a cocompact proper topological <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-manifold, which is equivariantly homotopy equivalent to the classifying space for proper actions. This problem is related to Nielsen Realization. We will make the assumption that the expected manifold model has a zero-dimensional singular set. Then we solve the problem in the case, for instance, that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> contains a normal torsionfree subgroup <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi\"> <mml:semantics> <mml:mi>π</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi\"> <mml:semantics> <mml:mi>π</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is hyperbolic and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi\"> <mml:semantics> <mml:mi>π</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the fundamental group of an aspherical closed manifold of dimension greater or equal to five and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma slash pi\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>π</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\Gamma /\\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite cyclic group of odd order.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"150 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9155","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the problem of whether, for a given virtually torsionfree discrete group Γ\Gamma, there exists a cocompact proper topological Γ\Gamma-manifold, which is equivariantly homotopy equivalent to the classifying space for proper actions. This problem is related to Nielsen Realization. We will make the assumption that the expected manifold model has a zero-dimensional singular set. Then we solve the problem in the case, for instance, that Γ\Gamma contains a normal torsionfree subgroup π\pi such that π\pi is hyperbolic and π\pi is the fundamental group of an aspherical closed manifold of dimension greater or equal to five and Γ/π\Gamma /\pi is a finite cyclic group of odd order.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.