On Nielsen realization and manifold models for classifying spaces

IF 1.2 2区 数学 Q1 MATHEMATICS
James Davis, Wolfgang Lück
{"title":"On Nielsen realization and manifold models for classifying spaces","authors":"James Davis, Wolfgang Lück","doi":"10.1090/tran/9155","DOIUrl":null,"url":null,"abstract":"<p>We consider the problem of whether, for a given virtually torsionfree discrete group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there exists a cocompact proper topological <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-manifold, which is equivariantly homotopy equivalent to the classifying space for proper actions. This problem is related to Nielsen Realization. We will make the assumption that the expected manifold model has a zero-dimensional singular set. Then we solve the problem in the case, for instance, that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> contains a normal torsionfree subgroup <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi\"> <mml:semantics> <mml:mi>π</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi\"> <mml:semantics> <mml:mi>π</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is hyperbolic and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"pi\"> <mml:semantics> <mml:mi>π</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the fundamental group of an aspherical closed manifold of dimension greater or equal to five and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma slash pi\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>π</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\Gamma /\\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite cyclic group of odd order.</p>","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":"150 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/9155","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the problem of whether, for a given virtually torsionfree discrete group Γ \Gamma , there exists a cocompact proper topological Γ \Gamma -manifold, which is equivariantly homotopy equivalent to the classifying space for proper actions. This problem is related to Nielsen Realization. We will make the assumption that the expected manifold model has a zero-dimensional singular set. Then we solve the problem in the case, for instance, that Γ \Gamma contains a normal torsionfree subgroup π \pi such that π \pi is hyperbolic and π \pi is the fundamental group of an aspherical closed manifold of dimension greater or equal to five and Γ / π \Gamma /\pi is a finite cyclic group of odd order.

论分类空间的尼尔森实现和流形模型
我们考虑的问题是,对于给定的无扭离散群Γ \Gamma,是否存在一个cocompact适当拓扑Γ \Gamma-manifold,它等价地等同于适当作用的分类空间。这个问题与尼尔森实现有关。我们将假设预期流形模型有一个零维奇异集。然后,我们会在以下情况下解决这个问题:例如,Γ \Gamma 包含一个正常的无扭子群 π \pi,使得 π \pi 是双曲的,并且 π \pi 是维数大于或等于五的非球面封闭流形的基群,并且 Γ / π \Gamma / π \pi 是奇数阶的有限循环群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.70%
发文量
171
审稿时长
3-6 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信