Jiayi Meng, Hengliang Mo, Tianyu Li, Manman Liu, Yili Chen, Suoding Li, Pingyu Wan, Long Lv, Hengyu Yang, Wenfang Zhao, Luocong Wang
{"title":"Preparation of CuO/Activated Carbon Fiber Filter for Adsorption/Catalytic Degradation of Residual Chlorine in Drinking Water","authors":"Jiayi Meng, Hengliang Mo, Tianyu Li, Manman Liu, Yili Chen, Suoding Li, Pingyu Wan, Long Lv, Hengyu Yang, Wenfang Zhao, Luocong Wang","doi":"10.1007/s10562-024-04829-1","DOIUrl":null,"url":null,"abstract":"<div><p>Residual chlorine has a bactericidal effect, but it may react with natural organic matter in water to produce harmful substances. In this work, we report an efficient residual chlorine removal filter with activated carbon fiber (ACF) as adsorption carrier and CuO as residual chlorine degradation catalyst. Experimental results show that CuO has high catalytic efficiency and no attenuation of catalytic performance in 2924 h. The CuO is loaded on the surface of ACF by dipping-calcinating method. When the loading rate is 1.5%, the CuO distribution is uniform without defects and agglomeration. Continuous-flow experiment result shows that 1.5%-CuO/ACF filter can treat water amount 2.2 times as long as that for single ACF filter (residual chlorine concentration < 0.1 mg/L). Weak acidity and rising temperature can improve the reaction activity and increase the degradation amount of residual chlorine. The composite filter has excellent adsorption performance for Cu<sup>2+</sup>, showing the Cu<sup>2+</sup> concentration in the produced water is less than 0.1 mg/L after filter treatment, which is in line with the National Drinking Water Standards, and in agreement with the Standard for Safety Assessment of Water Transmission and Distribution Equipment and Protective Materials for Drinking Water (GB/T17219-1998) of Immersion Experiment, indicating that 1.5%-CuO/ACF filter has good stability and safety.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04829-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Residual chlorine has a bactericidal effect, but it may react with natural organic matter in water to produce harmful substances. In this work, we report an efficient residual chlorine removal filter with activated carbon fiber (ACF) as adsorption carrier and CuO as residual chlorine degradation catalyst. Experimental results show that CuO has high catalytic efficiency and no attenuation of catalytic performance in 2924 h. The CuO is loaded on the surface of ACF by dipping-calcinating method. When the loading rate is 1.5%, the CuO distribution is uniform without defects and agglomeration. Continuous-flow experiment result shows that 1.5%-CuO/ACF filter can treat water amount 2.2 times as long as that for single ACF filter (residual chlorine concentration < 0.1 mg/L). Weak acidity and rising temperature can improve the reaction activity and increase the degradation amount of residual chlorine. The composite filter has excellent adsorption performance for Cu2+, showing the Cu2+ concentration in the produced water is less than 0.1 mg/L after filter treatment, which is in line with the National Drinking Water Standards, and in agreement with the Standard for Safety Assessment of Water Transmission and Distribution Equipment and Protective Materials for Drinking Water (GB/T17219-1998) of Immersion Experiment, indicating that 1.5%-CuO/ACF filter has good stability and safety.
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.