Randall W Davis,Lorenzo Fiori,Bernd Würsig,Dara N Orbach
{"title":"Drag reduction and locomotory power in dolphins: Gray's paradox revealed.","authors":"Randall W Davis,Lorenzo Fiori,Bernd Würsig,Dara N Orbach","doi":"10.1098/rsif.2024.0227","DOIUrl":null,"url":null,"abstract":"For 88 years, biologists and engineers have sought to understand the hydrodynamics enabling dolphins to swim at speeds seemingly beyond their energetic capabilities, a phenomenon known as Gray's paradox. Hydromechanical models calculating the drag of swimming dolphins estimated power requirements for sustained high-speed swimming, which were physiologically impossible. Using an uncrewed aerial vehicle, we calculated the total power of free-ranging dusky dolphins (Lagenorhynchus obscurus) at speeds from 0.9 to 6.9 m s-1, deriving drag coefficients (Cd) and drag. Our results showed that the Cd decreased exponentially with speed, reducing drag by up to 89% at speeds >2 m s-1, with an additional 17% reduction during porpoising (>4.0 m s-1). At 6.9 m s-1, drag was 32 N, with a power of 15.8 W kg-1, nearly identical to the mass-specific allometric prediction for the maximum aerobic capacity of other mammals and physiologically possible. The Cd at speeds >2.5 m s-1 indicated reduced turbulence in the boundary layer around the dolphin's body, thereby reducing drag. The ability of dusky dolphins to swim at sustained high speeds resulted from an exponential decrease in Cd, which was further reduced by porpoising, thereby explaining the low drag and locomotory power that resolved Gray's paradox.","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"10 1","pages":"20240227"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0227","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
For 88 years, biologists and engineers have sought to understand the hydrodynamics enabling dolphins to swim at speeds seemingly beyond their energetic capabilities, a phenomenon known as Gray's paradox. Hydromechanical models calculating the drag of swimming dolphins estimated power requirements for sustained high-speed swimming, which were physiologically impossible. Using an uncrewed aerial vehicle, we calculated the total power of free-ranging dusky dolphins (Lagenorhynchus obscurus) at speeds from 0.9 to 6.9 m s-1, deriving drag coefficients (Cd) and drag. Our results showed that the Cd decreased exponentially with speed, reducing drag by up to 89% at speeds >2 m s-1, with an additional 17% reduction during porpoising (>4.0 m s-1). At 6.9 m s-1, drag was 32 N, with a power of 15.8 W kg-1, nearly identical to the mass-specific allometric prediction for the maximum aerobic capacity of other mammals and physiologically possible. The Cd at speeds >2.5 m s-1 indicated reduced turbulence in the boundary layer around the dolphin's body, thereby reducing drag. The ability of dusky dolphins to swim at sustained high speeds resulted from an exponential decrease in Cd, which was further reduced by porpoising, thereby explaining the low drag and locomotory power that resolved Gray's paradox.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.