{"title":"Scattering of Shear Horizontal (SH) Waves by a Circular Hole in an Infinite Piezomagnetic Material","authors":"Qiang Li, Chunlong Gu, Dongxia Lei, Zhiying Ou","doi":"10.1007/s10338-024-00508-1","DOIUrl":null,"url":null,"abstract":"<p>The scattering of shear horizontal (SH) waves by a circular hole in an infinite piezomagnetic medium affected by magnetic field and compressive stress has been investigated theoretically in this study. The effective elastic, piezomagnetic, and magnetic permeability constants of the piezomagnetic material change with the external magnetic field and compressive stress. The governing differential equations for SH waves scattered by a circular hole are solved using the wave function expansion method. The effects of the magnetic field and compressive stress on mechanical displacement, dynamic stress, and magnetic potential of SH waves around a circular hole are discussed in detail. It has been found that the mechanical displacement around the circular hole increases with magnetic field and decreases with compressive stress. As the magnetic field increases, the maximum dynamic stress increases and structural resonance is strengthened. The findings presented in this study are beneficial for improving the performance of magnetoelastic acoustic wave devices.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10338-024-00508-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The scattering of shear horizontal (SH) waves by a circular hole in an infinite piezomagnetic medium affected by magnetic field and compressive stress has been investigated theoretically in this study. The effective elastic, piezomagnetic, and magnetic permeability constants of the piezomagnetic material change with the external magnetic field and compressive stress. The governing differential equations for SH waves scattered by a circular hole are solved using the wave function expansion method. The effects of the magnetic field and compressive stress on mechanical displacement, dynamic stress, and magnetic potential of SH waves around a circular hole are discussed in detail. It has been found that the mechanical displacement around the circular hole increases with magnetic field and decreases with compressive stress. As the magnetic field increases, the maximum dynamic stress increases and structural resonance is strengthened. The findings presented in this study are beneficial for improving the performance of magnetoelastic acoustic wave devices.
本研究从理论上研究了无限压磁介质中圆孔受磁场和压应力影响的剪切水平(SH)波散射。压磁材料的有效弹性常数、压磁常数和磁导常数随外磁场和压应力的变化而变化。采用波函数展开法求解了圆孔散射 SH 波的调控微分方程。详细讨论了磁场和压应力对圆孔周围 SH 波的机械位移、动应力和磁势的影响。研究发现,圆孔周围的机械位移随磁场的增加而增加,随压应力的增加而减小。随着磁场的增加,最大动应力增加,结构共振加强。本研究的发现有利于提高磁弹性声波设备的性能。