{"title":"Size-Dependent Analysis of Strain Energy Release Rate of Buckling Delamination Based on the Modified Couple Stress Theory","authors":"Siyu He, Feixiang Tang, Xiuming Liu, Zhongjie Gao, Fang Dong, Sheng Liu","doi":"10.1007/s10338-024-00520-5","DOIUrl":null,"url":null,"abstract":"<div><p>In micro-electro-mechanical systems, interface expansion issues are commonly encountered, and due to their small size, they often exist at the micro- or nano-scale. The influence of the micro-structural effect on interface mechanics cannot be ignored. This paper focuses on studying the impact of micro-structural effect on interface crack propagation. Modified couple stress theory (MCST) is used to study the buckling delamination of ultra-thin film-substrate systems. The equivalent elastic modulus (EEM) and equivalent flexural rigidity (EFR) are derived based on MCST. Substituting EEM and EFR into the classical Kirchhoff plate theory, the governing equations of ultra-thin film-substrate system with micro-structural effect can be obtained. The finite element method (FEM) was used to calculate the critical strain energy release rate for crack extension. Differences between the three theoretical approaches of MCST, classical theory (CT), and FEM were compared. The effects of stress ratio <span>\\(\\frac{\\sigma }{{\\sigma_{c} }}\\)</span>, initial crack length, film thickness, and micro-structural effect parameters on crack extension were analyzed. The results show that the FEM calculations coincide with the CT calculations. The stress ratio <span>\\(\\frac{\\sigma }{{\\sigma_{c} }}\\)</span>, initial crack length, film thickness, and micro-structural effect parameters have significantly influence crack extension.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"37 6","pages":"989 - 1002"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-024-00520-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In micro-electro-mechanical systems, interface expansion issues are commonly encountered, and due to their small size, they often exist at the micro- or nano-scale. The influence of the micro-structural effect on interface mechanics cannot be ignored. This paper focuses on studying the impact of micro-structural effect on interface crack propagation. Modified couple stress theory (MCST) is used to study the buckling delamination of ultra-thin film-substrate systems. The equivalent elastic modulus (EEM) and equivalent flexural rigidity (EFR) are derived based on MCST. Substituting EEM and EFR into the classical Kirchhoff plate theory, the governing equations of ultra-thin film-substrate system with micro-structural effect can be obtained. The finite element method (FEM) was used to calculate the critical strain energy release rate for crack extension. Differences between the three theoretical approaches of MCST, classical theory (CT), and FEM were compared. The effects of stress ratio \(\frac{\sigma }{{\sigma_{c} }}\), initial crack length, film thickness, and micro-structural effect parameters on crack extension were analyzed. The results show that the FEM calculations coincide with the CT calculations. The stress ratio \(\frac{\sigma }{{\sigma_{c} }}\), initial crack length, film thickness, and micro-structural effect parameters have significantly influence crack extension.
期刊介绍:
Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics.
The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables