{"title":"Preclinical Evaluation of 177Lu-OncoFAP-23, a Multivalent FAP-Targeted Radiopharmaceutical Therapeutic for Solid Tumors","authors":"Andrea Galbiati, Matilde Bocci, Domenico Ravazza, Jacqueline Mock, Ettore Gilardoni, Dario Neri, Samuele Cazzamalli","doi":"10.2967/jnumed.124.268200","DOIUrl":null,"url":null,"abstract":"<p>Fibroblast activation protein (FAP) is abundantly expressed in the stroma of most human solid tumors. Clinical-stage radiolabeled FAP ligands are increasingly used as tools for the detection of various cancer lesions. To unleash the full therapeutic potential of FAP-targeting agents, ligands need to remain at the tumor site for several days after administration. We recently described the discovery of OncoFAP, a high-affinity small organic ligand of FAP with a rapid accumulation in tumors and low uptake in healthy tissues in cancer patients. Trimerization of OncoFAP provided a derivative (named TriOncoFAP, or OncoFAP-23) with improved FAP affinity. In this work, we evaluated the tissue biodistribution profile and the therapeutic performance of OncoFAP-23 in tumor-bearing mice. <strong>Methods:</strong> OncoFAP-23 was radiolabeled with the theranostic radionuclide <sup>177</sup>Lu. Preclinical experiments were conducted on mice bearing SK-RC-52.hFAP (BALB/c nude mice) or CT-26.hFAP (BALB/c mice) tumors. <sup>177</sup>Lu-OncoFAP and <sup>177</sup>Lu-FAP-2286 were included in the biodistribution study as controls. Toxicologic evaluation was performed on Wistar rats and CD1 mice by injecting high doses of OncoFAP-23 or its cold-labeled counterpart, respectively. <strong>Results:</strong> <sup>177</sup>Lu-OncoFAP-23 emerged for its best-in-class biodistribution profile, high and prolonged tumor uptake (i.e., ∼16 percentage injected dose/g at 96 h), and low accumulation in healthy organs, which correlates well with its potent single-agent anticancer activity at low levels of administered radioactivity. Combination treatment with the tumor-targeted interleukin 2 (L19-IL2, a clinical-stage immunocytokine) further expands the therapeutic window of <sup>177</sup>Lu-OncoFAP-23 by potentiating its in vivo antitumor activity. Proteomics studies revealed a potent tumor-directed immune response on treatment with the combination. OncoFAP-23 and <sup>nat</sup>Lu-OncoFAP-23 exhibited a favorable toxicologic profile, without showing any side effects or signs of toxicity. <strong>Conclusion:</strong> OncoFAP-23 presents enhanced tumor uptake and tumor retention and low accumulation in healthy organs, findings that correspond to a strongly improved in vivo antitumor efficacy. The data presented in this work support the clinical development of <sup>177</sup>Lu-OncoFAP-23 for the treatment of FAP-positive solid tumors.</p>","PeriodicalId":22820,"journal":{"name":"The Journal of Nuclear Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nuclear Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2967/jnumed.124.268200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fibroblast activation protein (FAP) is abundantly expressed in the stroma of most human solid tumors. Clinical-stage radiolabeled FAP ligands are increasingly used as tools for the detection of various cancer lesions. To unleash the full therapeutic potential of FAP-targeting agents, ligands need to remain at the tumor site for several days after administration. We recently described the discovery of OncoFAP, a high-affinity small organic ligand of FAP with a rapid accumulation in tumors and low uptake in healthy tissues in cancer patients. Trimerization of OncoFAP provided a derivative (named TriOncoFAP, or OncoFAP-23) with improved FAP affinity. In this work, we evaluated the tissue biodistribution profile and the therapeutic performance of OncoFAP-23 in tumor-bearing mice. Methods: OncoFAP-23 was radiolabeled with the theranostic radionuclide 177Lu. Preclinical experiments were conducted on mice bearing SK-RC-52.hFAP (BALB/c nude mice) or CT-26.hFAP (BALB/c mice) tumors. 177Lu-OncoFAP and 177Lu-FAP-2286 were included in the biodistribution study as controls. Toxicologic evaluation was performed on Wistar rats and CD1 mice by injecting high doses of OncoFAP-23 or its cold-labeled counterpart, respectively. Results:177Lu-OncoFAP-23 emerged for its best-in-class biodistribution profile, high and prolonged tumor uptake (i.e., ∼16 percentage injected dose/g at 96 h), and low accumulation in healthy organs, which correlates well with its potent single-agent anticancer activity at low levels of administered radioactivity. Combination treatment with the tumor-targeted interleukin 2 (L19-IL2, a clinical-stage immunocytokine) further expands the therapeutic window of 177Lu-OncoFAP-23 by potentiating its in vivo antitumor activity. Proteomics studies revealed a potent tumor-directed immune response on treatment with the combination. OncoFAP-23 and natLu-OncoFAP-23 exhibited a favorable toxicologic profile, without showing any side effects or signs of toxicity. Conclusion: OncoFAP-23 presents enhanced tumor uptake and tumor retention and low accumulation in healthy organs, findings that correspond to a strongly improved in vivo antitumor efficacy. The data presented in this work support the clinical development of 177Lu-OncoFAP-23 for the treatment of FAP-positive solid tumors.