Security constrained optimal power shutoff for wildfire risk mitigation

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Noah Rhodes, Carleton Coffrin, Line Roald
{"title":"Security constrained optimal power shutoff for wildfire risk mitigation","authors":"Noah Rhodes,&nbsp;Carleton Coffrin,&nbsp;Line Roald","doi":"10.1049/gtd2.13246","DOIUrl":null,"url":null,"abstract":"<p>Electric grid faults are increasingly the source of ignition for major wildfires. To reduce the likelihood of such ignitions in high risk situations, utilities use preemptive de-energization of power lines, commonly referred to as Public Safety Power Shutoffs (PSPS). Besides raising challenging trade-offs between power outages and wildfire safety, PSPS removes redundancy from the network at a time when component faults are likely to happen. This may leave the network particularly vulnerable to unexpected line faults that may occur while the PSPS is in place. Previous works have not explicitly considered the impacts of these outages. To address this gap, the <i>Security Constrained Optimal Power Shutoff</i> problem is proposed which uses post-contingency security constraints to model the impact of unexpected line faults when planning a PSPS. This model enables, for the first time, the exploration of a wide range of trade-offs between both wildfire risk and pre- and post-contingency load shedding when designing PSPS plans, providing useful insights for utilities and policy makers considering different approaches to PSPS. The efficacy of the model is demonstrated using the EPRI 39-bus system as a case study. The results highlight the potential risks of not considering security constraints when planning PSPS and show that incorporating security constraints into the PSPS design process improves the resilience of current PSPS plans.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13246","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13246","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Electric grid faults are increasingly the source of ignition for major wildfires. To reduce the likelihood of such ignitions in high risk situations, utilities use preemptive de-energization of power lines, commonly referred to as Public Safety Power Shutoffs (PSPS). Besides raising challenging trade-offs between power outages and wildfire safety, PSPS removes redundancy from the network at a time when component faults are likely to happen. This may leave the network particularly vulnerable to unexpected line faults that may occur while the PSPS is in place. Previous works have not explicitly considered the impacts of these outages. To address this gap, the Security Constrained Optimal Power Shutoff problem is proposed which uses post-contingency security constraints to model the impact of unexpected line faults when planning a PSPS. This model enables, for the first time, the exploration of a wide range of trade-offs between both wildfire risk and pre- and post-contingency load shedding when designing PSPS plans, providing useful insights for utilities and policy makers considering different approaches to PSPS. The efficacy of the model is demonstrated using the EPRI 39-bus system as a case study. The results highlight the potential risks of not considering security constraints when planning PSPS and show that incorporating security constraints into the PSPS design process improves the resilience of current PSPS plans.

Abstract Image

降低野火风险的安全约束最优断电方案
电网故障越来越多地成为重大野火的引燃源。为了降低在高风险情况下发生此类火灾的可能性,电力公司采用了先发制人的断电措施,即通常所说的公共安全断电(PSPS)。除了要在停电和野火安全之间做出艰难的权衡之外,PSPS 还会在组件故障可能发生时消除网络的冗余。这可能会使网络特别容易受到 PSPS 存在期间可能发生的意外线路故障的影响。以前的工作没有明确考虑这些故障的影响。为了弥补这一不足,我们提出了安全约束的最优停电问题,该问题在规划 PSPS 时使用后应急安全约束来模拟意外线路故障的影响。该模型首次实现了在设计 PSPS 计划时,对野火风险与应急前后负荷削减之间的广泛权衡进行探索,为考虑采用不同 PSPS 方法的电力公司和政策制定者提供了有用的见解。以 EPRI 39 总线系统为案例,展示了该模型的功效。研究结果强调了在规划 PSPS 时不考虑安全限制因素的潜在风险,并表明将安全限制因素纳入 PSPS 设计过程可提高当前 PSPS 计划的弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信