{"title":"Neuro-adaptive prescribed performance control for spacecraft rendezvous based on the fully-actuated system approach","authors":"Shiyi Li, Kerun Liu, Ming Liu, Xibin Cao","doi":"10.1049/cth2.12736","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the control problem of spacecraft rendezvous with obstacle constraint, considering the external disturbance forces caused by orbit perturbation. Firstly, the translational dynamic model of spacecraft rendezvous is given and then rewritten into a second-order fully-actuated system form. Then, by employing the prescribed performance control method, the performance function and error transformation are determined, pre-defining the prescribed performance bounds. Moreover, the fully-actuated system approach is used to linearize the original nonlinear system, which simplifies the processes of control law design and ensures model accuracy. After that, to ensure that the spacecraft could avoid the dangerous zone during its manoeuvre, the artificial potential function is introduced, based on which a sliding mode surface is designed. Finally, the prescribed performance control–artificial potential function-based control law is derived, further adopting the neuro-adaptive method to deal with external interferences. The stability of the close-loop control system is analysed through the Lyapunov approach and the effectiveness of the proposed control scheme is verified by carrying out a numerical simulation.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"18 14","pages":"1868-1876"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12736","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12736","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the control problem of spacecraft rendezvous with obstacle constraint, considering the external disturbance forces caused by orbit perturbation. Firstly, the translational dynamic model of spacecraft rendezvous is given and then rewritten into a second-order fully-actuated system form. Then, by employing the prescribed performance control method, the performance function and error transformation are determined, pre-defining the prescribed performance bounds. Moreover, the fully-actuated system approach is used to linearize the original nonlinear system, which simplifies the processes of control law design and ensures model accuracy. After that, to ensure that the spacecraft could avoid the dangerous zone during its manoeuvre, the artificial potential function is introduced, based on which a sliding mode surface is designed. Finally, the prescribed performance control–artificial potential function-based control law is derived, further adopting the neuro-adaptive method to deal with external interferences. The stability of the close-loop control system is analysed through the Lyapunov approach and the effectiveness of the proposed control scheme is verified by carrying out a numerical simulation.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.