{"title":"Biomarkers Indicate Pliocene Uplift of the Maxian Mountains, Northeastern Tibetan Plateau","authors":"Bingyan Han, Tingjiang Peng, Churun Han, Zhichao Liu, Xiaomiao Li, Zhenhua Ma, Zhantao Feng, Meng Li, Aifeng Zhou, Chunhui Song","doi":"10.1029/2023GC011401","DOIUrl":null,"url":null,"abstract":"<p>Knowledge of Late Miocene-Early Pliocene environmental change is critical for understanding the interactions among global cooling, regional tectonic activity and Asian climatic evolution. However, their relationships remain unclear, partly due to the scarcity of quantitative reconstructions of temperature and hydroclimatic conditions, which limits our understanding of the effect of topography on montane climatic evolution. Here, we quantitatively reconstructed the Late Miocene-Early Pliocene temperature, hydroclimate, and pH of the Xiaoshuizi peneplain, northeastern Tibetan Plateau (NETP), based on glycerol dialkyl glycerol tetraethers. Our results indicate that the Xiaoshuizi temperature was relatively high with large fluctuations during 6.2–4.6 Ma. The temperature then gradually decreased until 4.0 Ma, when this trend was interrupted by an intensive warming event. Additionally, the combined R<sub>i/b</sub> and pH proxies revealed that the Xiaoshuizi region experienced a hydroclimatic transition from relatively wet to dry conditions after 4.0 Ma. Our integrated results show that the Xiaoshuizi climate became warm and dry during 4.0–3.6 Ma, in contrast to the global cooling trend and the occurrence of a humid climate on the eastern Chinese Loess Plateau and the North China Plain. We ascribe this anomalous change to a warm and dry climate during 4.0–3.6 Ma to a topographic Foehn effect triggered by surface uplift of the Maxian Mountains associated with extensive tectonic uplift of the NETP during the Middle Pliocene.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GC011401","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GC011401","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge of Late Miocene-Early Pliocene environmental change is critical for understanding the interactions among global cooling, regional tectonic activity and Asian climatic evolution. However, their relationships remain unclear, partly due to the scarcity of quantitative reconstructions of temperature and hydroclimatic conditions, which limits our understanding of the effect of topography on montane climatic evolution. Here, we quantitatively reconstructed the Late Miocene-Early Pliocene temperature, hydroclimate, and pH of the Xiaoshuizi peneplain, northeastern Tibetan Plateau (NETP), based on glycerol dialkyl glycerol tetraethers. Our results indicate that the Xiaoshuizi temperature was relatively high with large fluctuations during 6.2–4.6 Ma. The temperature then gradually decreased until 4.0 Ma, when this trend was interrupted by an intensive warming event. Additionally, the combined Ri/b and pH proxies revealed that the Xiaoshuizi region experienced a hydroclimatic transition from relatively wet to dry conditions after 4.0 Ma. Our integrated results show that the Xiaoshuizi climate became warm and dry during 4.0–3.6 Ma, in contrast to the global cooling trend and the occurrence of a humid climate on the eastern Chinese Loess Plateau and the North China Plain. We ascribe this anomalous change to a warm and dry climate during 4.0–3.6 Ma to a topographic Foehn effect triggered by surface uplift of the Maxian Mountains associated with extensive tectonic uplift of the NETP during the Middle Pliocene.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.