Selective kinetic control of interfacial charge transfer reactions in Si-composite anodes for Li-ion batteries†

IF 3.2 Q2 CHEMISTRY, PHYSICAL
Energy advances Pub Date : 2024-08-23 DOI:10.1039/D4YA00418C
Emma A. Cave, Tyson A. Carr and Cody W. Schlenker
{"title":"Selective kinetic control of interfacial charge transfer reactions in Si-composite anodes for Li-ion batteries†","authors":"Emma A. Cave, Tyson A. Carr and Cody W. Schlenker","doi":"10.1039/D4YA00418C","DOIUrl":null,"url":null,"abstract":"<p >In this report, we demonstrate a strategy to selectively suppress reactions at unpassivated active material surfaces in silicon composite electrodes, mitigating the capacity-draining effects of continual electrolyte reduction in alloying-type anodes for lithium-ion batteries. Inspired by dipolar modification of electrodes for photovoltaic applications, we introduced conformationally-labile permanent dipoles at the electrochemical electrode interface to dynamically modulate charge transfer kinetics across the interface. Polyacrylic acid (PAA) binder modified with the dipole-bearing molecule 3-cyanopropyltriethoxysilane displays a 17% increase in capacity retention <em>versus</em> unmodified PAA binder. Differential capacity analysis shows a marked cathodic shift of ∼150 mV in overpotential in the pre-alloying voltage range following the initial solid electrolyte interphase (SEI) formation step. At the same time, we observe negligible shift in overpotential for reversible lithium-ion storage, consistent with selective modulation of irreversible reaction kinetics. Electrochemical impedance spectroscopy indicates that this modification results in a thinner SEI layer. Despite the improved performance, the charge transfer resistance of the half-cell is higher with the modification, suggesting some opportunity for improving the strategy. Time-resolved spectroelectrochemical analysis of desolvation kinetics in modified binders indicates that the modified binder has slower and less selective ion transport. We conclude that future iterations of this strategy which avoid disrupting the beneficial ionic transport properties of the binder would result in even greater performance enhancement. We propose that this may be accomplished by incorporating oligomeric dipolar modifiers, either in the binder or at the active material itself. Either way would increase the ratio of dipoles to PAA linking sites, thus avoiding the competing deleterious impacts on device performance.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00418c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ya/d4ya00418c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this report, we demonstrate a strategy to selectively suppress reactions at unpassivated active material surfaces in silicon composite electrodes, mitigating the capacity-draining effects of continual electrolyte reduction in alloying-type anodes for lithium-ion batteries. Inspired by dipolar modification of electrodes for photovoltaic applications, we introduced conformationally-labile permanent dipoles at the electrochemical electrode interface to dynamically modulate charge transfer kinetics across the interface. Polyacrylic acid (PAA) binder modified with the dipole-bearing molecule 3-cyanopropyltriethoxysilane displays a 17% increase in capacity retention versus unmodified PAA binder. Differential capacity analysis shows a marked cathodic shift of ∼150 mV in overpotential in the pre-alloying voltage range following the initial solid electrolyte interphase (SEI) formation step. At the same time, we observe negligible shift in overpotential for reversible lithium-ion storage, consistent with selective modulation of irreversible reaction kinetics. Electrochemical impedance spectroscopy indicates that this modification results in a thinner SEI layer. Despite the improved performance, the charge transfer resistance of the half-cell is higher with the modification, suggesting some opportunity for improving the strategy. Time-resolved spectroelectrochemical analysis of desolvation kinetics in modified binders indicates that the modified binder has slower and less selective ion transport. We conclude that future iterations of this strategy which avoid disrupting the beneficial ionic transport properties of the binder would result in even greater performance enhancement. We propose that this may be accomplished by incorporating oligomeric dipolar modifiers, either in the binder or at the active material itself. Either way would increase the ratio of dipoles to PAA linking sites, thus avoiding the competing deleterious impacts on device performance.

Abstract Image

锂离子电池硅复合材料阳极中界面电荷转移反应的选择性动力学控制†。
在本报告中,我们展示了一种选择性抑制硅复合电极中未钝化活性材料表面反应的策略,从而减轻了合金型锂离子电池阳极中电解液持续还原对容量的影响。受用于光伏应用的电极偶极改性的启发,我们在电化学电极界面上引入了构象稳定的永久偶极,以动态调节跨界面的电荷转移动力学。用偶极分子 3-氰丙基三乙氧基硅烷修饰的聚丙烯酸(PAA)粘合剂与未修饰的聚丙烯酸粘合剂相比,容量保持率提高了 17%。差分容量分析表明,在最初的固体电解质相(SEI)形成步骤之后,合金化前电压范围内的过电位发生了明显的阴极转变,转变幅度为 150 mV。与此同时,我们观察到在可逆锂离子存储过程中过电位的移动微乎其微,这与不可逆反应动力学的选择性调节是一致的。电化学阻抗光谱表明,这种改性导致 SEI 层变薄。尽管性能有所改善,但改性后半电池的电荷转移电阻较高,这表明该策略还有改进的余地。对改性粘合剂中脱溶动力学的时间分辨光谱电化学分析表明,改性粘合剂的离子传输速度较慢,选择性较差。我们得出的结论是,这种策略的未来迭代如果能避免破坏粘合剂有益的离子传输特性,将会带来更大的性能提升。我们建议,可以通过在粘合剂中或活性材料本身加入低聚双极性改性剂来实现这一目标。无论采用哪种方法,都能提高偶极与 PAA 连接位点的比例,从而避免对器件性能产生有害的竞争性影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信