Modelling and Optimal Design of a Multifunctional Single-Stage Buck-Boost Differential Inverter

IF 5 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Rajesh Rajamony;Sheng Wang;Wenlong Ming
{"title":"Modelling and Optimal Design of a Multifunctional Single-Stage Buck-Boost Differential Inverter","authors":"Rajesh Rajamony;Sheng Wang;Wenlong Ming","doi":"10.1109/OJPEL.2024.3445313","DOIUrl":null,"url":null,"abstract":"In this paper, a single-stage buck-boost differential inverter is optimally designed for applications with varying input DC voltage (e.g., photovoltaics and fuel cell systems). The designed inverter has multiple functionalities, including power decoupling and AC output filtering, and it can operate with a wide DC voltage range without adding extra power conversion stages or filters. Hence, it is naturally compact and highly efficient. To fully exploit its benefits, the proposed inverter operating principle and mathematical model were first developed to form the foundation of an optimal design. The criteria for selecting the inverter's key components have been presented. This ensures that the developed inverter meets the aforementioned functional requirements without being overly sized. A digital design procedure based on artificial neural networks is followed for further multiple objective optimization, targeting high efficiency, high power density and low cost. A 1.8kW prototype of the inverter was fabricated through the digital design. The inverter's operating functionality with varying DC voltage, power decoupling, and filtering was demonstrated by both simulation studies and experimental tests on the prototype. The accuracy of the optimal design was also validated.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10638212","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10638212/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a single-stage buck-boost differential inverter is optimally designed for applications with varying input DC voltage (e.g., photovoltaics and fuel cell systems). The designed inverter has multiple functionalities, including power decoupling and AC output filtering, and it can operate with a wide DC voltage range without adding extra power conversion stages or filters. Hence, it is naturally compact and highly efficient. To fully exploit its benefits, the proposed inverter operating principle and mathematical model were first developed to form the foundation of an optimal design. The criteria for selecting the inverter's key components have been presented. This ensures that the developed inverter meets the aforementioned functional requirements without being overly sized. A digital design procedure based on artificial neural networks is followed for further multiple objective optimization, targeting high efficiency, high power density and low cost. A 1.8kW prototype of the inverter was fabricated through the digital design. The inverter's operating functionality with varying DC voltage, power decoupling, and filtering was demonstrated by both simulation studies and experimental tests on the prototype. The accuracy of the optimal design was also validated.
多功能单级降压-升压型差分逆变器的建模与优化设计
本文针对输入直流电压变化的应用(如光伏和燃料电池系统),优化设计了一种单级降压-升压型差分逆变器。所设计的逆变器具有多种功能,包括功率去耦和交流输出滤波,并且可以在宽直流电压范围内运行,无需增加额外的功率转换级或滤波器。因此,它具有天然的紧凑性和高效性。为了充分发挥逆变器的优势,我们首先开发了拟议的逆变器工作原理和数学模型,为优化设计奠定了基础。此外,还提出了选择逆变器关键部件的标准。这确保了所开发的逆变器既能满足上述功能要求,又不会过大。基于人工神经网络的数字设计程序将进一步进行多目标优化,以实现高效率、高功率密度和低成本为目标。通过数字设计,制造出了 1.8 千瓦的逆变器原型。通过对原型的仿真研究和实验测试,证明了逆变器在不同直流电压、功率解耦和滤波条件下的运行功能。优化设计的准确性也得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信