{"title":"A method for deriving oligomers from sulfamide monomer and their application as electrolytes","authors":"Annie-Pier Larouche , Françis Barray , Sylviane Rochon , Julie Hamel-Pâquet , Sergey Krachkovskiy , Lara Faour , Nicolas Dumaresq , Sadollah Ebrahimi , Armand Soldera , Jean-Christophe Daigle","doi":"10.1016/j.reactfunctpolym.2024.106051","DOIUrl":null,"url":null,"abstract":"<div><p>This paper describes the development of a method of catalytic polymerization that was then applied to synthesize sulfate-based oligomers from sulfamide. Two molecules, copper triflate and copper acetate, catalyzed the formation of oligomers with diol monomers. Two oligomers were identified as products of the reactions. Oligomers with sulfate incorporated in the backbone proved to have an ability for ion diffusion. When the oligomers were doped with lithium salt, anion transportation was predominant, as shown by solid-state NMR. The lithium ion was found to be strongly bonded to the backbone, while the anion was highly mobile. To corroborate this finding, we conducted molecular dynamics (MD) simulations, which revealed the structural characteristics and static properties of two electrolytes containing LiTFSI and two different polyethylene oxide oligomers. Interactions between the anion and cation were analyzed through computation of the radial distribution function (RDF) and the spatial distribution function (SDF). Our findings indicate that while the anion presents weak interactions with the polymer chain, the cation interacts strongly with the oligomer backbone.</p></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":"204 ","pages":"Article 106051"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514824002268","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper describes the development of a method of catalytic polymerization that was then applied to synthesize sulfate-based oligomers from sulfamide. Two molecules, copper triflate and copper acetate, catalyzed the formation of oligomers with diol monomers. Two oligomers were identified as products of the reactions. Oligomers with sulfate incorporated in the backbone proved to have an ability for ion diffusion. When the oligomers were doped with lithium salt, anion transportation was predominant, as shown by solid-state NMR. The lithium ion was found to be strongly bonded to the backbone, while the anion was highly mobile. To corroborate this finding, we conducted molecular dynamics (MD) simulations, which revealed the structural characteristics and static properties of two electrolytes containing LiTFSI and two different polyethylene oxide oligomers. Interactions between the anion and cation were analyzed through computation of the radial distribution function (RDF) and the spatial distribution function (SDF). Our findings indicate that while the anion presents weak interactions with the polymer chain, the cation interacts strongly with the oligomer backbone.
期刊介绍:
Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers.
Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.